CONSERVATIVE SYSTEMS WITH PORTS ON CONTACT MANIFOLDS
Authors
D. Eberard, B. Maschke, A.J. van der Schaft
Abstract
In this paper we propose an extension of port Hamiltonian systems, called conservative systems with ports, which encompass systems arising from the Irreversible Thermodynamics. Firstly we lift a port Hamiltonian system from its state space manifold to the thermodynamic phase space to a contact vector field with inputs and outputs. Secondly we define a more general class of contact vector field (called conservative system with ports) generated by a function corresponding to the power of a physical system and illustrate it on a simple example of irreversible system.
Keywords
conservative systems, contact forms, irreversible thermodynamics, port hamiltonian systems
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2005
- Volume: 38
- Issue: 1
- Pages: 342–347
- Publisher: Elsevier BV
- DOI: 10.3182/20050703-6-cz-1902.00711
- Note: 16th IFAC World Congress
BibTeX
@article{Eberard_2005,
title={{CONSERVATIVE SYSTEMS WITH PORTS ON CONTACT MANIFOLDS}},
volume={38},
ISSN={1474-6670},
DOI={10.3182/20050703-6-cz-1902.00711},
number={1},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Eberard, D. and Maschke, B. and van der Schaft, A.J.},
year={2005},
pages={342--347}
}References
- Arnold, (1989)
- Carathéodory, C. Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909) – 10.1007/bf01450409
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Fujimoto, K., Scherpen, J. M. A. & Gray, W. S. Hamiltonian realizations of nonlinear adjoint operators. Automatica 38, 1769–1775 (2002) – 10.1016/s0005-1098(02)00079-1
- Gibbs, (1928)
- Herman, (1973)
- Libermann, (1987)
- Marle, On submanifolds and quotients of Poisson and Jacobi manifolds. Banach center publications (2000)
- Maschke, B. M. J. Interconnection and Structure in Physical Systems’ Dynamics. IFAC Proceedings Volumes 31, 285–290 (1998) – 10.1016/s1474-6670(17)40349-1
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics 14, 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- Mrugala, A new representation of thermodynamic phase space. Bulletin de l’Académie des Sciences (1980)
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics 29, 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. & Crouch, P. E. Hamiltonian and self-adjoint control systems. Systems & Control Letters 8, 289–295 (1987) – 10.1016/0167-6911(87)90093-4