Brayton-Moser Formulation of High-Order Distributed Port-Hamiltonian Systems with One-Dimensional Spatial Domain
Authors
Abstract
For a class of distributed port-Hamiltonian systems with dissipation characterised by high-order differential operators, one-dimensional domain, and boundary actuation and sensing, an equivalent Brayton-Moser formulation is obtained. The result is that the state evolution is described by a gradient equation with respect to a storage function, the “mixed-potential,” that has the dimensions of power. This is the main difference with respect to the port-Hamiltonian form, where the dynamic depends on the derivatives up to a certain order and with respect to the spatial coordinate of the gradient of the Hamiltonian function, i.e. of the total energy.
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 2
- Pages: 46–51
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.08.009
- Note: 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019- Oaxaca, Mexico, 20–24 May 2019
BibTeX
@article{Macchelli_2019,
title={{Brayton-Moser Formulation of High-Order Distributed Port-Hamiltonian Systems with One-Dimensional Spatial Domain}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.08.009},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Macchelli, Alessandro},
year={2019},
pages={46--51}
}
References
- Arnold, (1989)
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Duindam, (2009)
- García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica vol. 46 127–132 (2010) – 10.1016/j.automatica.2009.10.012
- Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1174–1179 (2003) – 10.1109/tcsi.2003.816332
- Gorrec, Y., Maschke, B., Villegas, J. A. & Zwart, H. Dissipative boundary control systems with application to distributed parameters reactors. 2006 IEEE International Conference on Control Applications 668–673 (2006) doi:10.1109/cca.2006.285949 – 10.1109/cca.2006.285949
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Brayton-moser formulation of infinite dimensional port-hamiltonian systems with application to boundary control. 2016 IEEE 55th Conference on Decision and Control (CDC) 543–548 (2016) doi:10.1109/cdc.2016.7798325 – 10.1109/cdc.2016.7798325
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- Ortega, Putting energy back in control. (2001)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3