Asymptotic stability and strict passivity of port-Hamiltonian descriptor systems via state feedback
Authors
Abstract
While port-Hamiltonian descriptor systems are known to be stable and passive, they may not be asymptotically stable or strictly passive. Necessary and sufficient conditions are presented when these properties as well as the regularity and the index one property can be achieved via state feedback while preserving the port-Hamiltonian structure.
Keywords
Port-Hamiltonian descriptor system; Proportional state feedback; Regularity; Index reduction; Asymptotic stability; Strict passivity
Citation
- Journal: Systems & Control Letters
- Year: 2025
- Volume: 202
- Issue:
- Pages: 106116
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2025.106116
BibTeX
@article{Chu_2025,
title={{Asymptotic stability and strict passivity of port-Hamiltonian descriptor systems via state feedback}},
volume={202},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2025.106116},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Chu, Delin and Mehrmann, Volker},
year={2025},
pages={106116}
}
References
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM J. Matrix Anal. & Appl. 39, 1489–1519 (2018) – 10.1137/18m1164275
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Mehrmann, Differential–algebraic systems with dissipative Hamiltonian structure. Math. Control Signals Systems (2023)
- Jacob, Linear port-Hamiltonian systems on infinite-dimensional spaces. (2012)
- Rashad, Twenty years of distributed port-Hamiltonian systems: a literature review. IMA J. Math. Control. I (2020)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Beattie, Port-Hamiltonian descriptor systems. Math. Control Signals Systems (2018)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Morandin, (2024)
- van der Schaft, Port-Hamiltonian differential–algebraic systems. (2013)
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters 121, 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam J. Math. 48, 929–939 (2020) – 10.1007/s10013-020-00419-x
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters 177, 105564 (2023) – 10.1016/j.sysconle.2023.105564
- Hinrichsen, (2005)
- Kunkel, Differential-algebraic equations. (2024)
- Du, Robust stability of differential–algebraic equations. (2013)
- Cherifi, The difference between port-Hamiltonian, passive and positive real descriptor systems. Math. Control Signals Systems (2023)
- Willems, J. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Automat. Contr. 16, 621–634 (1971) – 10.1109/tac.1971.1099831
- Mehl, C., Mehrmann, V. & Wojtylak, M. Distance problems for dissipative Hamiltonian systems and related matrix polynomials. Linear Algebra and its Applications 623, 335–366 (2021) – 10.1016/j.laa.2020.05.026
- Kailath, (1980)
- Chu, D., Mehrmann, V. & Nichols, N. K. Minimum norm regularization of descriptor systems by mixed output feedback. Linear Algebra and its Applications 296, 39–77 (1999) – 10.1016/s0024-3795(99)00108-1
- Ortega, Passivity-based control of nonlinear systems: A tutorial. (1997)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Brivadis, L., Gauthier, J.-P., Sacchelli, L. & Serres, U. New perspectives on output feedback stabilization at an unobservable target. ESAIM: COCV 27, 102 (2021) – 10.1051/cocv/2021097
- Chu, (2024)
- Achleitner, F., Arnold, A. & Carlen, E. A. The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. Journal of Differential Equations 371, 83–115 (2023) – 10.1016/j.jde.2023.06.027