Application of Energy Shaping of Port-Hamiltonian System to Chaos Synchronization
Authors
Bin Zheng, Jianping Cai, Jin Zhou
Abstract
This paper investigates the issue of chaos synchronization of coupled dynamical systems by the use of energy shaping in port-Hamiltonian systems. A energy-based control scheme is developed to realize chaos synchronization in term of port- Hamiltonian systems, and the asymptotical stability for the closed-loop Hamiltonian system is derived by using the LaSalle’s invariance principle. It is shown that the developed energy-based synchronization scheme is relatively simple and easy to implement compared with some recent literatures. Finally, two simulation examples are performed to demonstrate the effectiveness of the proposed synchronization strategy method.
Citation
- Journal: 2021 40th Chinese Control Conference (CCC)
- Year: 2021
- Volume:
- Issue:
- Pages: 561–566
- Publisher: IEEE
- DOI: 10.23919/ccc52363.2021.9550640
BibTeX
@inproceedings{Zheng_2021,
title={{Application of Energy Shaping of Port-Hamiltonian System to Chaos Synchronization}},
DOI={10.23919/ccc52363.2021.9550640},
booktitle={{2021 40th Chinese Control Conference (CCC)}},
publisher={IEEE},
author={Zheng, Bin and Cai, Jianping and Zhou, Jin},
year={2021},
pages={561--566}
}
References
- Vincent, B., Vu, T., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian modeling and reduction of a burning plasma system. IFAC-PapersOnLine 51, 68–73 (2018) – 10.1016/j.ifacol.2018.06.017
- Secchi, C., Sabattini, L. & Fantuzzi, C. Port-Hamiltonian based teleoperation of a multi-robot system on periodic trajectories. IFAC-PapersOnLine 48, 69–74 (2015) – 10.1016/j.ifacol.2015.10.216
- pei, Application of generalized Hamiltonian systems to chaotic synchronization. Nonlinear Dynamics and Systems Theory (2009)
- Atan, Ö., Kutlu, F. & Castillo, O. Intuitionistic Fuzzy Sliding Controller for Uncertain Hyperchaotic Synchronization. Int. J. Fuzzy Syst. 22, 1430–1443 (2020) – 10.1007/s40815-020-00878-x
- Zhang, H., Zeng, Z. & Han, Q.-L. Synchronization of Multiple Reaction–Diffusion Neural Networks With Heterogeneous and Unbounded Time-Varying Delays. IEEE Trans. Cybern. 49, 2980–2991 (2019) – 10.1109/tcyb.2018.2837090
- LÜ, J. & CHEN, G. A NEW CHAOTIC ATTRACTOR COINED. Int. J. Bifurcation Chaos 12, 659–661 (2002) – 10.1142/s0218127402004620
- genesio, Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica (2008)
- de Paula, A. S. & Savi, M. A. A multiparameter chaos control method based on OGY approach. Chaos, Solitons & Fractals 40, 1376–1390 (2009) – 10.1016/j.chaos.2007.09.056
- Wang Xiao-Feng, Xue Hong-Jun, Si Shou-Kui & Yao Yue-Ting. Mixture control of chaotic system using particle swarm optimization algorithms and OGY method. Acta Phys. Sin. 58, 3729 (2009) – 10.7498/aps.58.3729
- Xinghuo Yu, Guanrong Chen, Yang Xia, Yanxing Song & Zhenwei Cao. An invariant-manifold-based method for chaos control. IEEE Trans. Circuits Syst. I 48, 930–937 (2001) – 10.1109/81.940183
- Liu, C. & Dong, L. Stabilization of Lagrange points in circular restricted three-body problem: A port-Hamiltonian approach. Physics Letters A 383, 1907–1914 (2019) – 10.1016/j.physleta.2019.03.033
- Salmon, R. Hamiltonian Fluid Mechanics. Annu. Rev. Fluid Mech. 20, 225–256 (1988) – 10.1146/annurev.fl.20.010188.001301
- Macchelli, A. & Melchiorri, C. Passivity-based control of spatially discretized port-Hamiltonian system. IFAC Proceedings Volumes 43, 849–854 (2010) – 10.3182/20100901-3-it-2016.00158
- yu, Port-Hamiltonian system modeling and position tracking control of PMSM based on maximum output power principle. ICIC Express Letters (2012)
- Scherpen, J. M. A. & van der Schaft, A. J. A structure preserving minimal representation of a nonlinear port-Hamiltonian system. 2008 47th IEEE Conference on Decision and Control 4885–4890 (2008) doi:10.1109/cdc.2008.4739266 – 10.1109/cdc.2008.4739266
- Cai, L., He, Y. & Wu, M. On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian systems. Nonlinear Dyn 72, 91–99 (2012) – 10.1007/s11071-012-0693-7
- Zakharov, V. E. & Faddeev, L. D. Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct Anal Its Appl 5, 280–287 (1972) – 10.1007/bf01086739
- Gentili, L., Macchelli, A., Melchiorri, C. & Mameli, A. Mastering the complexity of an Ultrasonic Sealing System: The port-Hamiltonian approach. Mechatronics 21, 594–603 (2011) – 10.1016/j.mechatronics.2011.02.009
- Grillakis, M. Analysis of the linearization around a critical point of an infinite dimensional hamiltonian system. Comm Pure Appl Math 43, 299–333 (1990) – 10.1002/cpa.3160430302
- Dai, D. & Ma, X.-K. Chaos synchronization by using intermittent parametric adaptive control method. Physics Letters A 288, 23–28 (2001) – 10.1016/s0375-9601(01)00521-7
- Zhao, J., Wu, Y. & Liu, Q. Chaos synchronization between the coupled systems on network with unknown parameters. Applied Mathematics and Computation 229, 254–259 (2014) – 10.1016/j.amc.2013.12.066
- Lei, Y., Yung, K.-L. & Xu, Y. Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control. Journal of Sound and Vibration 329, 973–979 (2010) – 10.1016/j.jsv.2009.10.029
- Wang, F. & Liu, C. A new criterion for chaos and hyperchaos synchronization using linear feedback control. Physics Letters A 360, 274–278 (2006) – 10.1016/j.physleta.2006.08.037
- Yassen, M. T. Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos, Solitons & Fractals 26, 913–920 (2005) – 10.1016/j.chaos.2005.01.047
- Haipeng Ren & Ding Liu. Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Trans. Circuits Syst. II 53, 45–50 (2006) – 10.1109/tcsii.2005.854592
- Chen, M. & Han, Z. Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos, Solitons & Fractals 17, 709–716 (2003) – 10.1016/s0960-0779(02)00487-3