Stabilization of Lagrange points in circular restricted three-body problem: A port-Hamiltonian approach
Authors
Abstract
Current station keeping strategies target periodic orbits around the unstable Lagrange points. These control strategies are based on the Circular Restricted Three-Body Problem (CRTBP) linearized around an equilibrium point and cannot ensure global stability. In this paper, we use the port-Hamiltonian approach to reformulate the CRTBP with input, which preserves the original nonlinear dynamics. Designing a control strategy based on energy shaping and dissipation injection, we obtain the closed-loop Hamiltonian as the candidate of Lyapunov function, which guarantees asymptotic stability. The control strategy designed here is successfully applied to the stabilization of Lagrange points in CRTBP. Furthermore, the designed control approach shows global stability within the application region of CRTBP model, and it is applicable to set arbitrary equilibrium points. The current framework is also stable against error in the thrust and still works when the third body moves beyond the region of applicability of the linearized dynamics, where the linear controller may fail. Finally, this method has potential to be extended to the three-dimensional CRTBP, where both the perturbation and the thrust out of the plane are considered.
Keywords
Lagrange points; Circular Restricted Three-Body Problem; Port-Hamiltonian; Global stability
Citation
- Journal: Physics Letters A
- Year: 2019
- Volume: 383
- Issue: 16
- Pages: 1907–1914
- Publisher: Elsevier BV
- DOI: 10.1016/j.physleta.2019.03.033
BibTeX
@article{Liu_2019,
title={{Stabilization of Lagrange points in circular restricted three-body problem: A port-Hamiltonian approach}},
volume={383},
ISSN={0375-9601},
DOI={10.1016/j.physleta.2019.03.033},
number={16},
journal={Physics Letters A},
publisher={Elsevier BV},
author={Liu, Chang and Dong, Lu},
year={2019},
pages={1907--1914}
}
References
- Musielak, Z. E. & Quarles, B. The three-body problem. Reports on Progress in Physics vol. 77 065901 (2014) – 10.1088/0034-4885/77/6/065901
- Dubeibe, F. L., Lora-Clavijo, F. D. & González, G. A. Pseudo-Newtonian planar circular restricted 3-body problem. Physics Letters A vol. 381 563–567 (2017) – 10.1016/j.physleta.2016.12.024
- Hill, G. W. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Mathematica vol. 8 1–36 (1886) – 10.1007/bf02417081
- Gladman, B. Dynamics of Systems of Two Close Planets. Icarus vol. 106 247–263 (1993) – 10.1006/icar.1993.1169
- Satyal, S., Quarles, B. & Hinse, T. C. Application of chaos indicators in the study of dynamics of S-type extrasolar planets in stellar binaries. Monthly Notices of the Royal Astronomical Society vol. 433 2215–2225 (2013) – 10.1093/mnras/stt888
- Szenkovits, F. & Makó, Z. About the Hill stability of extrasolar planets in stellar binary systems. Celestial Mechanics and Dynamical Astronomy vol. 101 273–287 (2008) – 10.1007/s10569-008-9144-7
- Pilbratt, G. L. et al. HerschelSpace Observatory. Astronomy and Astrophysics vol. 518 L1 (2010) – 10.1051/0004-6361/201014759
- Gardner, J. P. et al. The James Webb Space Telescope. Space Science Reviews vol. 123 485–606 (2006) – 10.1007/s11214-006-8315-7
- Farquhar, The flight of ISEE-3/ICE-origins, mission history, and a legacy. (1998)
- Stone, E. C. et al. Space Science Reviews vol. 86 1–22 (1998) – 10.1023/a:1005082526237
- Sweetser, Artemis mission design. (2012)
- Shirobokov, M., Trofimov, S. & Ovchinnikov, M. Survey of Station-Keeping Techniques for Libration Point Orbits. Journal of Guidance, Control, and Dynamics vol. 40 1085–1105 (2017) – 10.2514/1.g001850
- Meyer, K. R. & Schmidt, D. S. The stability of the Lagrange triangular point and a theorem of Arnold. Journal of Differential Equations vol. 62 222–236 (1986) – 10.1016/0022-0396(86)90098-7
- G�mez, G., Jorba, A., Masdemont, J. & Sim�, C. Study of the transfer from the Earth to a halo orbit around the equilibrium pointL 1. Celestial Mechanics & Dynamical Astronomy vol. 56 541–562 (1993) – 10.1007/bf00696185
- Richardson, D. L. Halo Orbit Formulation for the ISEE-3 Mission. Journal of Guidance and Control vol. 3 543–548 (1980) – 10.2514/3.56033
- Cielaszyk, D. & Wie, B. New approach to halo orbit determination and control. Journal of Guidance, Control, and Dynamics vol. 19 266–273 (1996) – 10.2514/3.21614
- Ming, X. & Shijie, X. Trajectory and Correction Maneuver During the Transfer from Earth to Halo Orbit. Chinese Journal of Aeronautics vol. 21 200–206 (2008) – 10.1016/s1000-9361(08)60026-6
- Akiyama, Y., Bando, M. & Hokamoto, S. Explicit Form of Station-Keeping and Formation Flying Controller for Libration Point Orbits. Journal of Guidance, Control, and Dynamics vol. 41 1407–1415 (2018) – 10.2514/1.g002845
- Yamato, H. & Spencer, D. B. Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations. Journal of Guidance, Control, and Dynamics vol. 27 1035–1045 (2004) – 10.2514/1.4524
- LYAPUNOV, A. M. The general problem of the stability of motion. International Journal of Control vol. 55 531–534 (1992) – 10.1080/00207179208934253
- Bhatia, (2002)
- Yahalom, A., Levitan, J., Lewkowicz, M. & Horwitz, L. Lyapunov vs. geometrical stability analysis of the Kepler and the restricted three body problems. Physics Letters A vol. 375 2111–2117 (2011) – 10.1016/j.physleta.2011.04.016
- De Queiroz, (2012)
- Jacobi, Sur le mouvement d’un point et sur un cas particulier du problème des trois corps. Comput. Rend. (1836)
- Euler, De motu rectilineo trium corporum se mutuo attrahentium. (1767)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Van Der Schaft, (2000)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Liu, C. & Dong, L. Physics-based control education: energy, dissipation, and structure assignments. European Journal of Physics vol. 40 035006 (2019) – 10.1088/1361-6404/ab03e8
- Jarabek, (2004)
- LaSalle, J. Some Extensions of Liapunov’s Second Method. IRE Transactions on Circuit Theory vol. 7 520–527 (1960) – 10.1109/tct.1960.1086720
- Kwakernaak, (1972)
- Zhou, (1996)