An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes
Authors
D. Eberard, B.M. Maschke, A.J. van der Schaft
Abstract
It is shown that the intrinsic geometry associated with equilibrium thermodynamics, namely the contact geometry, provides also a suitable framework in order to deal with irreversible thermodynamical processes. Therefore we introduce a class of dynamical systems on contact manifolds, called conservative contact systems, defined as contact vector fields generated by some contact Hamiltonian function satisfying a compatibility condition with some Legendre submanifold of the contact manifold. Considering physical systems’ modeling, the Legendre submanifold corresponds to the definition of the thermodynamical properties of the system and the contact Hamiltonian function corresponds to the definition of some irreversible processes taking place in the system. Open thermodynamical systems may also be modeled by augmenting the conservative contact systems with some input and output variables (in the sense of automatic control) and so-called input vector fields and lead to the definition of port contact systems. Finally complex systems consisting of coupled simple thermodynamical or mechanical systems may be represented by the composition of such port contact systems through algebraic relations called interconnection structure. Two examples illustrate this composition of contact systems: a gas under a piston submitted to some external force and the conduction of heat between two media with external thermostat.
Keywords
contact structure, hamiltonian systems, irreversible thermodynamics
Citation
- Journal: Reports on Mathematical Physics
- Year: 2007
- Volume: 60
- Issue: 2
- Pages: 175–198
- Publisher: Elsevier BV
- DOI: 10.1016/s0034-4877(07)00024-9
BibTeX
@article{Eberard_2007,
title={{An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes}},
volume={60},
ISSN={0034-4877},
DOI={10.1016/s0034-4877(07)00024-9},
number={2},
journal={Reports on Mathematical Physics},
publisher={Elsevier BV},
author={Eberard, D. and Maschke, B.M. and van der Schaft, A.J.},
year={2007},
pages={175--198}
}References
- Abraham, (1994)
- Arnold, (1978)
- Arnold, (1989)
- Brockett, Control theory and analytical mechanics. (1977)
- Carathéodory, C. Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909) – 10.1007/bf01450409
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- de Groot, (1962)
- Dorfman, (1993)
- Eberard, An extension of port Hamiltonian systems to irreversible systems. (2004)
- Eberard, Conservative systems with ports on contact manifolds. (2005)
- Eberard, Port contact systems for irreversible thermodynamical systems. (2005)
- Gibbs, Graphical methods in the thermodynamics of fluids. Trans. Conn. Acad (1873)
- Gibbs, Method of geometrical representation of the termodynamic properties of substances by means of surfaces. Trans. Conn. Acad (1873)
- Godbillon, (1969)
- Grmela, M. Reciprocity relations in thermodynamics. Physica A: Statistical Mechanics and its Applications 309, 304–328 (2002) – 10.1016/s0378-4371(02)00564-2
- Herman, (1973)
- Ingarden, (1985)
- Jongschaap, R. & Öttinger, H. C. The mathematical representation of driven thermodynamic systems. Journal of Non-Newtonian Fluid Mechanics 120, 3–9 (2004) – 10.1016/j.jnnfm.2003.11.008
- Libermann, (1987)
- Marsden, Number 174 in London Mathematical Society Lecture Notes Series. (1992)
- Maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Proc NOLCOS’92 (1992)
- Maschke, Interconnected mechanical systems. Part 2: The dynamics of spatial mechanical networks. (1997)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics 14, 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- Mrugała, A new representation of Thermodynamic Phase Space. Bull. Polish Acad. Sci (1980)
- Janyszek, H. & Mrugała, R. Geometrical structure of the state space in classical statistical and phenomenological thermodynamics. Reports on Mathematical Physics 27, 145–159 (1989) – 10.1016/0034-4877(89)90001-3
- Mrugała, R. Continuous contact transformations in thermodynamics. Reports on Mathematical Physics 33, 149–154 (1993) – 10.1016/0034-4877(93)90050-o
- Mrugaa̵, R. On a special family of thermodynamic processes and their invariants. Reports on Mathematical Physics 46, 461–468 (2000) – 10.1016/s0034-4877(00)90012-0
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics 29, 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Nijmeijer, (1990)
- Ortega, J.-P. & Planas-Bielsa, V. Dynamics on Leibniz manifolds. Journal of Geometry and Physics 52, 1–27 (2004) – 10.1016/j.geomphys.2004.01.002
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Sandler, (1999)
- van der Schaft, System Theory and Mechanics. (1989)
- van der Schaft, Interconnection and Geometry. (1999)
- van der Schaft, (2000)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, Interconnected mechanical systems. Part 1 : Geometry of interconnection and implicit Hamiltonian systems. (1997)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493