An Energy-Based Approach to the Nonlinear Modeling and Drag-Free Control System Design of Space-Borne Gravitational Wave Detectors
Authors
Haojun Ma, Mauricio Muñoz-Arias, Peng Han, Jianhua Zheng, Dong Gao
Abstract
In the future, drag-free satellites will be the key platform to detect gravitational waves in deep space. Due to the ambitious ultra-quiet-stable control requirements of such a mission, the system dynamics are quite complex and strongly nonlinear, which introduces challenges in the modeling and control of the spacecraft. Currently, drag-free controller designs focus on linearized systems and usually invoke linear control theory. These methods ignore the nonlinearities of the system and may cause instability in real applications. In this work, we first propose an energy-based method to model the drag-free system in the port-Hamiltonian framework. Then, a nonlinear drag-free controller with integral action is designed. It is proved that the achieved controller secures internal stability, rejection of unknown disturbances, and input-to-state stability. Finally, a numerical simulation is conducted to verify the theoretical results and the control performance.
Citation
- Journal: IEEE Transactions on Aerospace and Electronic Systems
- Year: 2024
- Volume: 60
- Issue: 5
- Pages: 5868–5879
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/taes.2024.3400168
BibTeX
@article{Ma_2024,
title={{An Energy-Based Approach to the Nonlinear Modeling and Drag-Free Control System Design of Space-Borne Gravitational Wave Detectors}},
volume={60},
ISSN={2371-9877},
DOI={10.1109/taes.2024.3400168},
number={5},
journal={IEEE Transactions on Aerospace and Electronic Systems},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Ma, Haojun and Muñoz-Arias, Mauricio and Han, Peng and Zheng, Jianhua and Gao, Dong},
year={2024},
pages={5868--5879}
}
References
- Abbott, B. P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters vol. 116 (2016) – 10.1103/physrevlett.116.061102
- Amaro-Seoane, P. et al. Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity vol. 26 (2023) – 10.1007/s41114-022-00041-y
- Hu, W.-R. & Wu, Y.-L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review vol. 4 685–686 (2017) – 10.1093/nsr/nwx116
- Luo, J. et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity vol. 33 035010 (2016) – 10.1088/0264-9381/33/3/035010
- Schutz, B. F. Gravitational wave astronomy. Classical and Quantum Gravity vol. 16 A131–A156 (1999) – 10.1088/0264-9381/16/12a/307
- LANGE, B. The Drag-Free Satellite. AIAA Journal vol. 2 1590–1606 (1964) – 10.2514/3.55086
- Dittus, Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space (2009)
- Bonny, Overview of disturbance reduction requirements for LISA. (2002)
- Danzmann, K. & R diger, A. LISA technology concept, status, prospects. Classical and Quantum Gravity vol. 20 S1–S9 (2003) – 10.1088/0264-9381/20/10/301
- Montemurro, Thermo-elastic distortion modelling for drag-free satellite simulations. Masters thesis (2004)
- Cirillo, Controller design for the acquisition phase of the LISA mission using a Kalman filter. (2007)
- Maghami, P. G. & Hyde, T. T. Laser interferometer space antenna dynamics and controls model. Classical and Quantum Gravity vol. 20 S273–S282 (2003) – 10.1088/0264-9381/20/10/330
- Gath, P., Schulte, H. R., Weise, D. & Johann, U. Drag Free and Attitude Control System Design for the LISA Science Mode. AIAA Guidance, Navigation and Control Conference and Exhibit (2007) doi:10.2514/6.2007-6731 – 10.2514/6.2007-6731
- Vidano, S., Novara, C., Colangelo, L. & Grzymisch, J. The LISA DFACS: A nonlinear model for the spacecraft dynamics. Aerospace Science and Technology vol. 107 106313 (2020) – 10.1016/j.ast.2020.106313
- Wu, S.-F. & Fertin, D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory. Acta Astronautica vol. 62 668–682 (2008) – 10.1016/j.actaastro.2008.01.038
- Grynagier, A., Ziegler, T. & Fichter, W. Identification of Dynamic Parameters for a One-Axis Drag-Free Gradiometer. IEEE Transactions on Aerospace and Electronic Systems vol. 49 341–355 (2013) – 10.1109/taes.2013.6404107
- Zhang, C., He, J., Duan, L. & Kang, Q. Design of an Active Disturbance Rejection Control for Drag-Free Satellite. Microgravity Science and Technology vol. 31 31–48 (2018) – 10.1007/s12217-018-9662-1
- Wang, Z., Hou, Z. & Zhang, Y. Improvement of the Long-Term Orbit Prediction for LEO Navigation Satellites Using the Inner Formation Method. IEEE Transactions on Aerospace and Electronic Systems vol. 55 2532–2542 (2019) – 10.1109/taes.2019.2891158
- Maghami, P., O’Donnell, J. & Hsu, O. Drag-Free Control Design for the ST7 Disturbance Reduction System Flight Experiment. AIAA Guidance, Navigation and Control Conference and Exhibit (2007) doi:10.2514/6.2007-6733 – 10.2514/6.2007-6733
- Fichter, W., Schleicher, A., Szerdahelyi, L., Theil, S. & Airey, P. Drag-free control system for frame dragging measurements based on cold atom interferometry. Acta Astronautica vol. 57 788–799 (2005) – 10.1016/j.actaastro.2005.03.070
- Lian, X. et al. Frequency Separation Control for Drag-Free Satellite With Frequency-Domain Constraints. IEEE Transactions on Aerospace and Electronic Systems vol. 57 4085–4096 (2021) – 10.1109/taes.2021.3088456
- Canuto, E. Drag-free and attitude control for the GOCE satellite. Automatica vol. 44 1766–1780 (2008) – 10.1016/j.automatica.2007.11.023
- Xiaobin, L., Jinxiu, Z., Jihe, W., Peiji, W. & Zhenkun, L. State and disturbance estimation for test masses of drag-free satellites based on self-recurrent wavelet neural network. Advances in Space Research vol. 67 3654–3666 (2021) – 10.1016/j.asr.2020.09.014
- Ma, H., Zheng, J., Han, P. & Gao, D. Robust composite control design of drag-free satellite with Kalman filter-based extended state observer for disturbance reduction. Advances in Space Research vol. 70 3034–3050 (2022) – 10.1016/j.asr.2022.07.048
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Brogliato, Dissipative systems analysis and control. Theory Appl. (2007)
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Dirksz, D. A. & Scherpen, J. M. A. On Tracking Control of Rigid-Joint Robots With Only Position Measurements. IEEE Transactions on Control Systems Technology vol. 21 1510–1513 (2013) – 10.1109/tcst.2012.2204886
- Vos, E., Scherpen, J. M. A. & van der Schaft, A. J. Equal distribution of satellite constellations on circular target orbits. Automatica vol. 50 2641–2647 (2014) – 10.1016/j.automatica.2014.08.027
- Fujimoto, K., Takeuchi, T. & Matsumoto, Y. On port-Hamiltonian modeling and control of quaternion systems. IFAC-PapersOnLine vol. 48 39–44 (2015) – 10.1016/j.ifacol.2015.10.211
- Markley, F. L. & Crassidis, J. L. Fundamentals of Spacecraft Attitude Determination and Control. (Springer New York, 2014). doi:10.1007/978-1-4939-0802-8 – 10.1007/978-1-4939-0802-8
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Khalil, Nonlinear Systems (2000)
- Luo, Z., Guo, Z., Jin, G., Wu, Y. & Hu, W. A brief analysis to Taiji: Science and technology. Results in Physics vol. 16 102918 (2020) – 10.1016/j.rinp.2019.102918