A Structure Preserving Approach for Control of Future Distribution Grids and Microgrids Guaranteeing Large Signal Stability
Authors
Marco Cupelli, Siddharth Bhanderi, Sriram Karthik Gurumurthy, Antonello Monti
Abstract
This paper describes the application of the Port Controlled Hamiltonian Network for Modelling and Control of non-linear power system dynamics. Goal of this work is to propose a methodology for system level design for power electronics driven electrical networks able to guarantee large signal stability. Starting from a model-level modular approach, the system is defined using the interconnection concept. The paper focuses on a DC micro-grid scenario where several converters interact with a lumped load. Contrary to previous work, the load is modelled as a Constant Power Load (CPL) introducing new challenges in terms of system stability.
Citation
- Journal: 2018 IEEE Conference on Control Technology and Applications (CCTA)
- Year: 2018
- Volume:
- Issue:
- Pages: 1166–1173
- Publisher: IEEE
- DOI: 10.1109/ccta.2018.8511563
BibTeX
@inproceedings{Cupelli_2018,
title={{A Structure Preserving Approach for Control of Future Distribution Grids and Microgrids Guaranteeing Large Signal Stability}},
DOI={10.1109/ccta.2018.8511563},
booktitle={{2018 IEEE Conference on Control Technology and Applications (CCTA)}},
publisher={IEEE},
author={Cupelli, Marco and Bhanderi, Siddharth and Gurumurthy, Sriram Karthik and Monti, Antonello},
year={2018},
pages={1166--1173}
}
References
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- ortega, Interconnection and damping assignment passivity based control of port-controlled Hamiltonian systems. Automatica 2002 (2002)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R. & Garcia-Canseco, E. Interconnection and damping assignment passivity-based control: towards a constructive procedure - Part I. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3412-3417 Vol.4 (2004) doi:10.1109/cdc.2004.1429236 – 10.1109/cdc.2004.1429236
- Zeng, J., Zhang, Z. & Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load. IEEE Trans. on Ind. Applicat. 50, 2314–2322 (2014) – 10.1109/tia.2013.2290872
- Rosa, A. H. R., Morais, L. M. F., de Souza, T. M. & Seleme, I. S. Comparison of nonlinear control techniques applied to SEPIC and CUK converters with reduced modeling and hybrid solutions. 2016 12th IEEE International Conference on Industry Applications (INDUSCON) 1–8 (2016) doi:10.1109/induscon.2016.7874496 – 10.1109/induscon.2016.7874496
- Lee, G. H., Gui, Y., Kim, C. & Chung, C. C. Direct power control for three phase grid connected inverter via port-controlled Hamiltonian method. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society 002312–002317 (2015) doi:10.1109/iecon.2015.7392447 – 10.1109/iecon.2015.7392447
- Gerardo, D., Palacios, E. & Cardenas, V. Interconnection and Damping Passivity-Based Control applied to a single-phase voltage source inverter. 12th IEEE International Power Electronics Congress 229–234 (2010) doi:10.1109/ciep.2010.5598907 – 10.1109/ciep.2010.5598907
- Bergna-Diaz, G., Zonetti, D., Sanchez, S., Tedeschi, E. & Ortega, R. PI passivity-based control of modular multilevel converters for multi-terminal HVDC systems. 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) 1–8 (2017) doi:10.1109/compel.2017.8013329 – 10.1109/compel.2017.8013329
- Kwasinski, A., Weaver, W. & Balog, R. S. Microgrids and other Local Area Power and Energy Systems. (2016) doi:10.1017/cbo9781139002998 – 10.1017/cbo9781139002998
- Molinas, M., Moltoni, D., Fascendini, G., Suul, J. A. & Undeland, T. Constant power loads in AC distribution systems: An investigation of stability. 2008 IEEE International Symposium on Industrial Electronics 1531–1536 (2008) doi:10.1109/isie.2008.4677119 – 10.1109/isie.2008.4677119
- Weiss, L., Mathis, W. & Trajkovic, L. A generalization of Brayton-Moser’s mixed potential function. IEEE Trans. Circuits Syst. I 45, 423–427 (1998) – 10.1109/81.669065
- Riccobono, A. & Santi, E. Comprehensive Review of Stability Criteria for DC Power Distribution Systems. IEEE Trans. on Ind. Applicat. 50, 3525–3535 (2014) – 10.1109/tia.2014.2309800
-
cvetkovi?, A two-level approach to tuning FACTS for transient stabilization. PES General Meeting Conference & Exposition 2014 IEEE (2014) - Marx, D., Magne, P., Nahid-Mobarakeh, B., Pierfederici, S. & Davat, B. Large Signal Stability Analysis Tools in DC Power Systems With Constant Power Loads and Variable Power Loads—A Review. IEEE Trans. Power Electron. 27, 1773–1787 (2012) – 10.1109/tpel.2011.2170202
- Cupelli, M., Zhu, L. & Monti, A. Why Ideal Constant Power Loads Are Not the Worst Case Condition From a Control Standpoint. IEEE Trans. Smart Grid 6, 2596–2606 (2015) – 10.1109/tsg.2014.2361630
- Cvetkovic, M. & Ilic, M. Interaction variables for distributed numerical integration of nonlinear power system dynamics. 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton) 560–566 (2015) doi:10.1109/allerton.2015.7447054 – 10.1109/allerton.2015.7447054
- Riccobono, A. et al. Stability of Shipboard DC Power Distribution: Online Impedance-Based Systems Methods. IEEE Electrific. Mag. 5, 55–67 (2017) – 10.1109/mele.2017.2718858
- shaiz, On port-Hamiltonian modelling of the synchronous generator and ultimate boundedness of its solutions. Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control (2012)
- cupelli, Advanced control methods for robust stability of MVDC systems (2015)
- Schiffer, J., Fridman, E. & Ortega, R. Stability of a class of delayed port-Hamiltonian systems with application to droop-controlled microgrids. 2015 54th IEEE Conference on Decision and Control (CDC) 6391–6396 (2015) doi:10.1109/cdc.2015.7403226 – 10.1109/cdc.2015.7403226
- cupelli, Voltage Control for Buck Converter Based MVDC Microgrids with Interconnection and Damping Assignment Passivity Based Control. 2018 19th Mediterranean Electrotechnical Conference (MELECON) (2016)
- IEEE Recommended Practice for 1 KV to 35 KV Medium-Voltage DC Power Systems on Ships (2010)
- Meshram, R. V. et al. Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Trans. Contr. Syst. Technol. 27, 161–174 (2019) – 10.1109/tcst.2017.2761866
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Trans. Automat. Contr. 62, 2612–2622 (2017) – 10.1109/tac.2016.2613901