Authors

Fernando Jiménez, Hiroaki Yoshimura

Abstract

In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange–Dirac dynamical systems using a Dirac structure and its associated Hamilton–Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space T Q × V ∗ , where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler–Lagrange equations can be formulated by the Hamilton–Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle ( T Q ⊕ T ∗ Q ) × V ∗ . Associated with this variational principle, we establish a Dirac structure on ( T Q ⊕ T ∗ Q ) × V ∗ in order to define an intrinsic vakonomic Lagrange–Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange–Dirac system using a Dirac structure on T ∗ Q × V ∗ , where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange–Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

Keywords

Dirac structures; Vakonomic mechanics; Nonholonomic mechanics; Variational principles; Implicit Lagrangian systems

Citation

BibTeX

@article{Jim_nez_2015,
  title={{Dirac structures in vakonomic mechanics}},
  volume={94},
  ISSN={0393-0440},
  DOI={10.1016/j.geomphys.2014.11.002},
  journal={Journal of Geometry and Physics},
  publisher={Elsevier BV},
  author={Jiménez, Fernando and Yoshimura, Hiroaki},
  year={2015},
  pages={158--178}
}

Download the bib file

References

  • Lanczos, (1949)
  • Arnold, (1988)
  • Giaquinta, (1996)
  • Jurdjevic, (1997)
  • Marsden, (1999)
  • Bloch, (2003)
  • Kozlov, Realization of nonintegrable constraints in classical mechanics. Dokl. Akad. Nauk SSSR (1983)
  • Lewis, A. D. & Murray, R. M. Variational principles for constrained systems: Theory and experiment. International Journal of Non-Linear Mechanics 30, 793–815 (1995) – 10.1016/0020-7462(95)00024-0
  • Cortés, J., de León, M., de Diego, D. M. & Martínez, S. Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions. SIAM J. Control Optim. 41, 1389–1412 (2002) – 10.1137/s036301290036817x
  • Koon, W. S. & Marsden, J. E. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on Mathematical Physics 40, 21–62 (1997) – 10.1016/s0034-4877(97)85617-0
  • Neimark, (1972)
  • Bloch, Nonholonomic and vakonomic control systems on Riemannian manifolds. (1993)
  • Brockett, Control theory and singular Riemannian geometry. (1982)
  • de León, Conservation laws and symmetry in economic growth models: A geometrical approach. Extracta Math. (1998)
  • Koiller, J. & Delgado, J. On efficiency calculations for nonholonomic locomotion problems: An application to microswimming. Reports on Mathematical Physics 42, 165–183 (1998) – 10.1016/s0034-4877(98)80009-8
  • de Leon, M., Marrero, J. C. & de Diego, D. M. Vakonomic mechanics versus non-holonomic mechanics: a unified geometrical approach. Journal of Geometry and Physics 35, 126–144 (2000) – 10.1016/s0393-0440(00)00004-8
  • Benito, R. & Martín de Diego, D. Discrete vakonomic mechanics. Journal of Mathematical Physics 46, (2005) – 10.1063/1.2008214
  • Martı́nez, S., Cortés, J. & de León, M. The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: The vakonomic bracket. Journal of Mathematical Physics 41, 2090–2120 (2000) – 10.1063/1.533229
  • Dirac, P. A. M. Generalized Hamiltonian Dynamics. Can. j. math. 2, 129–148 (1950) – 10.4153/cjm-1950-012-1
  • Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics 57, 133–156 (2006)10.1016/j.geomphys.2006.02.009
  • Skinner, R. & Rusk, R. Generalized Hamiltonian dynamics. I. Formulation on T*Q⊕ Q. Journal of Mathematical Physics 24, 2589–2594 (1983) – 10.1063/1.525654
  • Tulczyjew, The Legendre transformation. Ann. Inst. H. Poincaré Sect. A (1977)
  • Cendra, H., Holm, D. D., Hoyle, M. J. W. & Marsden, J. E. The Maxwell–Vlasov equations in Euler–Poincaré form. Journal of Mathematical Physics 39, 3138–3157 (1998) – 10.1063/1.532244
  • Courant, T. Tangent Dirac structures. J. Phys. A: Math. Gen. 23, 5153–5168 (1990) – 10.1088/0305-4470/23/22/010
  • Courant, Beyond Poisson structures. (1988)
  • Dorfman, I. Ya. Dirac structures of integrable evolution equations. Physics Letters A 125, 240–246 (1987)10.1016/0375-9601(87)90201-5
  • Dirac, (1964)
  • Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990)10.1090/s0002-9947-1990-0998124-1
  • van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Üebertragtech. (1995)
  • Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics 57, 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
  • Grabowska, K. & Grabowski, J. Dirac algebroids in Lagrangian and Hamiltonian mechanics. Journal of Geometry and Physics 61, 2233–2253 (2011) – 10.1016/j.geomphys.2011.06.018
  • Yoshimura, Induced symplectic structures and holonomic Lagrangian mechanical systems. J. Syst. Des. Dyn. (2008)
  • de León, M., Martín de Diego, D. & Santamaría-Merino, A. Discrete variational integrators and optimal control theory. Adv Comput Math 26, 251–268 (2006) – 10.1007/s10444-004-4093-5
  • Jiménez, F., Kobilarov, M. & Martín de Diego, D. Discrete Variational Optimal Control. J Nonlinear Sci 23, 393–426 (2012) – 10.1007/s00332-012-9156-z
  • Pontryagin, (1962)
  • Sussmann, An introduction to the coordinate-free maximum principle. (1998)
  • Langerock, B. A connection theoretic approach to sub-Riemannian geometry. Journal of Geometry and Physics 46, 203–230 (2003) – 10.1016/s0393-0440(02)00026-8
  • Montgomery, (2002)
  • GRABOWSKA, K., URBAŃSKI, P. & GRABOWSKI, J. GEOMETRICAL MECHANICS ON ALGEBROIDS. Int. J. Geom. Methods Mod. Phys. 03, 559–575 (2006) – 10.1142/s0219887806001259
  • Weinstein, A. Symplectic manifolds and their lagrangian submanifolds. Advances in Mathematics 6, 329–346 (1971) – 10.1016/0001-8708(71)90020-x
  • Abraham, (1978)
  • Weinstein, (1979)
  • Libermann, (1987)
  • Tulczyjew, A slow and careful Legendre transformation for singular Lagrangians. Acta Phys. Polon. B (1999)
  • de León, M., Jiménez, F. & de Diego, D. M. Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings. J. Phys. A: Math. Theor. 45, 205204 (2012) – 10.1088/1751-8113/45/20/205204
  • Tulczyjew, Les sous-variétés lagrangiennes et la dynamique Hamiltonienne. C. R. Acad. Sci. Paris Sér. A (1976)
  • Tulczyjew, Les sous-variétés lagrangiennes et la dynamique Lagrangienne. C. R. Acad. Sci. Paris Sér. A (1976)
  • Cantrijn, F., León, M. de & Diego, D. M. de. On almost-Poisson structures in nonholonomic mechanics. Nonlinearity 12, 721–737 (1999) – 10.1088/0951-7715/12/3/316
  • Ibort, A Dirac bracket for nonholonomic Lagrangian systems. (1998)
  • Koon, Poisson reduction of nonholonomic mechanical systems with symmetry. (1998)
  • Vaisman, (1994)
  • de León, M., Martín de Diego, D. & Vaquero, M. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics 6, 121–140 (2014) – 10.3934/jgm.2014.6.121
  • Gràcia, X., Marín-Solano, J. & Muñoz-Lecanda, M.-C. Some geometric aspects of variational calculus in constrained systems. Reports on Mathematical Physics 51, 127–148 (2003) – 10.1016/s0034-4877(03)80006-x
  • de León, M. A historical review on nonholomic mechanics. RACSAM 106, 191–224 (2011) – 10.1007/s13398-011-0046-2
  • Cardin, F. & Favretti, M. On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints. Journal of Geometry and Physics 18, 295–325 (1996) – 10.1016/0393-0440(95)00016-x
  • Zampieri, G. Nonholonomic versus Vakonomic Dynamics. Journal of Differential Equations 163, 335–347 (2000) – 10.1006/jdeq.1999.3727
  • Grabowska, K. & Grabowski, J. Variational calculus with constraints on general algebroids. J. Phys. A: Math. Theor. 41, 175204 (2008) – 10.1088/1751-8113/41/17/175204
  • Martínez, S., Cortés, J. & de León, M. Symmetries in vakonomic dynamics: applications to optimal control. Journal of Geometry and Physics 38, 343–365 (2001) – 10.1016/s0393-0440(00)00069-3