Authors

Fernando Castaños, Bayu Jayawardhana, Romeo Ortega, Eloísa García-Canseco

Abstract

In this note we identify graph-theoretic conditions which allow to write an RLC circuit as port-Hamiltonian with constant input matrices. We show that under additional monotonicity conditions of the network’s components, the circuit enjoys the property of relative passivity, an extended notion of classical passivity. The property of relative passivity is then used to build simple, yet robust and globally stable, Proportional plus Integral controllers.

Keywords

nonlinear networks, passivity, port-hamiltonian systems, stability, stabilization

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2008
  • Volume: 41
  • Issue: 2
  • Pages: 6202–6207
  • Publisher: Elsevier BV
  • DOI: 10.3182/20080706-5-kr-1001.01047
  • Note: 17th IFAC World Congress

BibTeX

@article{Casta_os_2008,
  title={{A Class of Nonlinear RLC Circuits Globally Stabilizable by Proportional plus Integral Controllers}},
  volume={41},
  ISSN={1474-6670},
  DOI={10.3182/20080706-5-kr-1001.01047},
  number={2},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={Castaños, Fernando and Jayawardhana, Bayu and Ortega, Romeo and García-Canseco, Eloísa},
  year={2008},
  pages={6202--6207}
}

Download the bib file

References

  • Bernstein, G. M. & Lieberman, M. A. A method for obtaining a canonical Hamiltonian for nonlinear LC circuits. IEEE Trans. Circuits Syst. 36, 411–420 (1989) – 10.1109/31.17588
  • Blankenstein, G. Geometric modeling of nonlinear RLC circuits. IEEE Trans. Circuits Syst. I 52, 396–404 (2005) – 10.1109/tcsi.2004.840481
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quart. Appl. Math. 22, 81–104 (1964) – 10.1090/qam/169747
  • Byrnes, (1997)
  • Cahill, L. On the Selection of State Variables for Nonlinear RLC Networks. IEEE Trans. Circuit Theory 16, 553–555 (1969) – 10.1109/tct.1969.1083016
  • Chua, L. & Green, D. Graph-theoretic properties of dynamic nonlinear networks. IEEE Trans. Circuits Syst. 23, 292–312 (1976) – 10.1109/tcs.1976.1084220
  • Chua, L. & McPherson, J. Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans. Circuits Syst. 21, 277–286 (1974) – 10.1109/tcs.1974.1083849
  • Desoer, (1969)
  • Desoer, (1975)
  • Hiriart-Urruty, (1993)
  • Jayawardhana, B., Ortega, R., Garcia-Canseco, E. & Castanos, F. Passivity of Nonlinear Incremental Systems: Application to PI Stabilization of Nonlinear RLC Circuits. Proceedings of the 45th IEEE Conference on Decision and Control 3808–3812 (2006) doi:10.1109/cdc.2006.377132 – 10.1109/cdc.2006.377132
  • Jeltsema, D. & Scherpen, J. M. A. A dual relation between port-Hamiltonian systems and the Brayton–Moser equations for nonlinear switched RLC circuits. Automatica 39, 969–979 (2003)10.1016/s0005-1098(03)00070-0
  • Khalil, (1996)
  • Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
  • Roska, T. The limits of modeling of nonlinear circuits. IEEE Trans. Circuits Syst. 28, 212–216 (1981) – 10.1109/tcs.1981.1084974
  • La Salle, (1961)
  • Sangiovanni-Vincentelli, A. & Wang, Y. On equivalent dynamic networks: Elimination of capacitor loops and inductor cutsets. IEEE Trans. Circuits Syst. 25, 174–177 (1978) – 10.1109/tcs.1978.1084448
  • Stern, T. On the Equations of Nonlinear Networks. IEEE Trans. Circuit Theory 13, 74–81 (1966) – 10.1109/tct.1966.1082545
  • van der Schaft, (2000)
  • Weiss, L., Mathis, W. & Trajkovic, L. A generalization of Brayton-Moser’s mixed potential function. IEEE Trans. Circuits Syst. I 45, 423–427 (1998) – 10.1109/81.669065