Authors

Luis Miguel Esquivel-Sancho, Roberto Pereira-Arroyo, Mauricio Munoz-Arias

Abstract

The self-excited induction generator presents important advantages for isolated generation systems ranging from low cost to simplicity of construction, operation, and maintenance. The complexity of the output voltage regulation problem for the generator is due to the nonlinear dynamics effects in presence of variable systems loads. The main contribution of the current work is first a generalization of the modeling approach to the self-exited squirrel-cage induction generator which is based on a stationary d-q frame of reference. The modeling approach is done via an energy-based strategy, more specifically, the port-Hamiltonian framework. Furthermore, we present here a novel control law based on a trajectory tracking strategy in order to attain asymptotic stability on a time-variant desired voltage at the output of the generator. The control action based on a so-called error system approach is focused on an exerted torque on the generator’s shaft. The performance of our modeling and control approach is validated via numerical simulations.

Citation

  • Journal: 2021 60th IEEE Conference on Decision and Control (CDC)
  • Year: 2021
  • Volume:
  • Issue:
  • Pages:
  • Publisher: IEEE
  • DOI: 10.1109/cdc45484.2021.9682864

BibTeX

@inproceedings{Esquivel_Sancho_2021,
  title={{Voltage Regulation for a Self-Excited Induction Generator}},
  DOI={10.1109/cdc45484.2021.9682864},
  booktitle={{2021 60th IEEE Conference on Decision and Control (CDC)}},
  publisher={IEEE},
  author={Esquivel-Sancho, Luis Miguel and Pereira-Arroyo, Roberto and Munoz-Arias, Mauricio},
  year={2021}
}

Download the bib file

References

  • Chatterjee, J. K., Perumal, B. V. & Gopu, N. R. Analysis of Operation of a Self-Excited Induction Generator With Generalized Impedance Controller. IEEE Transactions on Energy Conversion vol. 22 307–315 (2007) – 10.1109/tec.2006.875432
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Esquivel-Sancho, L. M., Pereira-Arroyo, R. & Munoz-Arias, M. An energy-based modeling approach to the induction machine. 2021 European Control Conference (ECC) 2543–2548 (2021) doi:10.23919/ecc54610.2021.9654842 – 10.23919/ecc54610.2021.9654842
  • Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
  • Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dynamics vol. 72 49–59 (2012) – 10.1007/s11071-012-0689-3
  • González, H., Duarte-Mermoud, M. A., Pelissier, I., Travieso-Torres, J. C. & Ortega, R. A novel induction motor control scheme using IDA-PBC. Journal of Control Theory and Applications vol. 6 59–68 (2008) – 10.1007/s11768-008-7193-9
  • Lee, R. J., Pillay, P. & Harley, R. G. D,Q reference frames for the simulation of induction motors. Electric Power Systems Research vol. 8 15–26 (1984) – 10.1016/0378-7796(84)90030-0
  • Bodson, M. & Kiselychnyk, O. Nonlinear dynamic model and stability analysis of self-excited induction generators. Proceedings of the 2011 American Control Conference 4574–4579 (2011) doi:10.1109/acc.2011.5991253 – 10.1109/acc.2011.5991253
  • Singh, G. K. Self-excited induction generator research—a survey. Electric Power Systems Research vol. 69 107–114 (2004) – 10.1016/j.epsr.2003.08.004
  • Singh, B., Murthy, S. S., Reddy, R. S. & Arora, P. Implementation of modified current synchronous detection method for voltage control of self‐excited induction generator. IET Power Electronics vol. 8 1146–1155 (2015) – 10.1049/iet-pel.2014.0718
  • Scherer, L. G., Tambara, R. V. & de Camargo, R. F. Voltage and frequency regulation of standalone self‐excited induction generator for micro‐hydro power generation using discrete‐time adaptive control. IET Renewable Power Generation vol. 10 531–540 (2016) – 10.1049/iet-rpg.2015.0321
  • Mishra, E. & Tiwari, S. Comparative Analysis of Fuzzy Logic and PI Controller Based Electronic Load Controller for Self-Excited Induction Generator. Advances in Electrical Engineering vol. 2017 1–9 (2017) – 10.1155/2017/5620830
  • Geng, H., Xu, D., Wu, B. & Huang, W. Direct Voltage Control for a Stand-Alone Wind-Driven Self-Excited Induction Generator With Improved Power Quality. IEEE Transactions on Power Electronics vol. 26 2358–2368 (2011) – 10.1109/tpel.2010.2104329
  • Singh, G. K. Self-Excited Induction Generator for Renewable Applications. Encyclopedia of Sustainable Technologies 239–256 (2017) doi:10.1016/b978-0-12-409548-9.10132-0 – 10.1016/b978-0-12-409548-9.10132-0
  • Jadhav, H. T. & Roy, R. A comprehensive review on the grid integration of doubly fed induction generator. International Journal of Electrical Power & Energy Systems vol. 49 8–18 (2013) – 10.1016/j.ijepes.2012.11.020
  • Deraz, S. A. & Abdel Kader, F. E. A new control strategy for a stand-alone self-excited induction generator driven by a variable speed wind turbine. Renewable Energy vol. 51 263–273 (2013) – 10.1016/j.renene.2012.09.010