An energy-based modeling approach to the induction machine
Authors
Luis Miguel Esquivel-Sancho, Roberto Pereira-Arroyo, Mauricio Munoz-Arias
Abstract
The induction machine is used in a wide variety of applications as a means of converting electrical energy into mechanical work and vice versa. There is an increasing use of the machine configured as a generator in unconventional wind and micro-hydro energy systems. The advantages of the system range from low cost to simplicity of construction, operation, and maintenance. This work provides a generalization to the port-Hamiltonian model of a squirrel-cage induction motor based on a synchronously rotating reference frame of d-q axes. Furthermore, the port-Hamiltonian formalism is used to provide a modeling approach to a self-excited induction generator which is also deduced for the d-q stationary reference frame. The performance our modeling approach is validated via numerical simulations.
Citation
- Journal: 2021 European Control Conference (ECC)
- Year: 2021
- Volume:
- Issue:
- Pages: 2543–2548
- Publisher: IEEE
- DOI: 10.23919/ecc54610.2021.9654842
BibTeX
@inproceedings{Esquivel_Sancho_2021,
title={{An energy-based modeling approach to the induction machine}},
DOI={10.23919/ecc54610.2021.9654842},
booktitle={{2021 European Control Conference (ECC)}},
publisher={IEEE},
author={Esquivel-Sancho, Luis Miguel and Pereira-Arroyo, Roberto and Munoz-Arias, Mauricio},
year={2021},
pages={2543--2548}
}
References
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- chapman, Electric Machinery Fundamentals (2011)
- Stanley, H. C. An analysis of the induction machine. Electr. Eng. 57, 751–757 (1938) – 10.1109/ee.1938.6431069
- Bassett, E. D. & Potter, F. M. Capacitive Excitation for Induction Generators. Trans. Am. Inst. Electr. Eng. 54, 540–545 (1935) – 10.1109/t-aiee.1935.5057024
- Khan, M. F., Khan, M. R. & Iqbal, A. Modeling, implementation and analysis of a high (six) phase self excited induction generator. Journal of Electrical Systems and Information Technology 5, 794–812 (2018) – 10.1016/j.jesit.2016.12.016
- ma, Self-excited induction generator: A study based on nonlinear dynamic methods. PhD thesis (2012)
- mathworks, Simscape™ User’s Guide (2020)
- Lee, R. J., Pillay, P. & Harley, R. G. D,Q reference frames for the simulation of induction motors. Electric Power Systems Research 8, 15–26 (1984) – 10.1016/0378-7796(84)90030-0
- Krause, P. C. & Thomas, C. H. Simulation of Symmetrical Induction Machinery. IEEE Trans. Power Appar. Syst. 84, 1038–1053 (1965) – 10.1109/tpas.1965.4766135
- Chiasson, J. Modeling and High‐Performance Control of Electric Machines. (2005) doi:10.1002/0471722359 – 10.1002/0471722359
- bimal, Modern Power Electronics and AC Drives (2003)
- González, H., Duarte-Mermoud, M. A., Pelissier, I., Travieso-Torres, J. C. & Ortega, R. A novel induction motor control scheme using IDA-PBC. J. Control Theory Appl. 6, 59–68 (2008) – 10.1007/s11768-008-7193-9
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
- Singh, G. K. Self-excited induction generator research—a survey. Electric Power Systems Research 69, 107–114 (2004) – 10.1016/j.epsr.2003.08.004
- Singh, G. K. Self-Excited Induction Generator for Renewable Applications. Encyclopedia of Sustainable Technologies 239–256 (2017) doi:10.1016/b978-0-12-409548-9.10132-0 – 10.1016/b978-0-12-409548-9.10132-0
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3