Trajectory tracking PID passivity-based control of spacecraft formation flying around Sun-Earth L2 point in the port-Hamiltonian framework
Authors
Jiaming Wang, Qingrui Zhou, Wei Zheng, Jingdong Diao
Abstract
Spacecraft formation flying for interferometric observations around the 2nd Lagrange point in the Sun-Earth system (SEL2) is currently focal point in deep space exploration research, which demands high precision in relative position control of spacecraft. This paper proposes the relative motion dynamics of satellite formations around the L2 point in the port-Hamiltonian framework, and establishes a high-precision nonlinear dynamics model. PID passivity-based control (PID-PBC) is widely used in engineering. However, existing methods of PID-PBC cannot address the trajectory tracking issues in port-Hamiltonian systems. Utilizing the contraction properties of the port-Hamiltonian system, this paper proposes the trajectory tracking PID-PBC (tPID-PBC) approach, effectively resolving trajectory tracking issues for formation dynamics around L2 point in port-Hamiltonian framework. The paper details explicit solutions of the Partial Differential Equations (PDE) for the tPID-PBC method and its controller structure, and references the trajectories of interferometric observation formations, to verify the method’s effectiveness through numerical simulation. The presented control approach is applicable across generic port-Hamiltonian systems, offering substantial theoretical value.
Keywords
SEL2; Formation flight; Nonlinear dynamic; Port-Hamiltonian system; Passivity-based control
Citation
- Journal: Advances in Space Research
- Year: 2024
- Volume: 74
- Issue: 10
- Pages: 5086–5099
- Publisher: Elsevier BV
- DOI: 10.1016/j.asr.2024.07.054
BibTeX
@article{Wang_2024,
title={{Trajectory tracking PID passivity-based control of spacecraft formation flying around Sun-Earth L2 point in the port-Hamiltonian framework}},
volume={74},
ISSN={0273-1177},
DOI={10.1016/j.asr.2024.07.054},
number={10},
journal={Advances in Space Research},
publisher={Elsevier BV},
author={Wang, Jiaming and Zhou, Qingrui and Zheng, Wei and Diao, Jingdong},
year={2024},
pages={5086--5099}
}
References
- Åström, K. J. & Hägglund, T. The future of PID control. Control Engineering Practice vol. 9 1163–1175 (2001) – 10.1016/s0967-0661(01)00062-4
- Burnett, E. R. & Schaub, H. Spacecraft formation and orbit control using differential attitude-dependent solar radiation pressure. Advances in Space Research vol. 67 3396–3408 (2021) – 10.1016/j.asr.2020.03.047
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Duindam, (2009)
- Javanmardi, N., Yaghmaei, A. & Yazdanpanah, M. J. Spacecraft formation flying in the port-Hamiltonian framework. Nonlinear Dynamics vol. 99 2765–2783 (2020) – 10.1007/s11071-019-05445-0
- Koon, Dynamical systems, the three-body problem and space mission design. (2000)
- Kotyczka, P. Local linear dynamics assignment in IDA-PBC. Automatica vol. 49 1037–1044 (2013) – 10.1016/j.automatica.2013.01.028
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica vol. 25 877–888 (1989) – 10.1016/0005-1098(89)90054-x
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Reyes-Baez, R., van der Schaft, A., Jayawardhana, B., Donaire, A. & Perez, T. Tracking Control of Marine Craft in the port-Hamiltonian Framework: A Virtual Differential Passivity Approach. 2019 18th European Control Conference (ECC) (2019) doi:10.23919/ecc.2019.8796246 – 10.23919/ecc.2019.8796246
- Rouzegar, H., Khosravi, A. & Sarhadi, P. Spacecraft formation flying control around L2 sun-earth libration point using on–off SDRE approach. Advances in Space Research vol. 67 2172–2184 (2021) – 10.1016/j.asr.2021.01.008
- Shao, J., Zhou, Q., Ye, D., Xiao, Y. & Sun, Z. Finite-time synchronization control scheme for underactuated satellite formation reconfiguration. Advances in Space Research vol. 72 1010–1026 (2023) – 10.1016/j.asr.2023.04.011
- Sugiura, K., Takao, Y., Sugihara, A. K., Sugawara, Y. & Mori, O. Formation flying along artificial halo orbit around Sun–Earth L2 point for interferometric observations. Acta Astronautica vol. 208 36–48 (2023) – 10.1016/j.actaastro.2023.03.040
- Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H. & Nakazawa, S. System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3. Acta Astronautica vol. 91 356–362 (2013) – 10.1016/j.actaastro.2013.06.028
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Yan, H. Port-Hamiltonian Based Control of the Sun-Earth 3D Circular Restricted Three-Body Problem: Stabilization of the <i>L</i><sub>1</sub> Lagrange Point. Modern Mechanical Engineering vol. 10 39–49 (2020) – 10.4236/mme.2020.103005
- Xiao, Y., Ruiter, A. de, Ye, D. & Sun, Z. Adaptive Fault-Tolerant Attitude Tracking Control for Flexible Spacecraft With Guaranteed Performance Bounds. IEEE Transactions on Aerospace and Electronic Systems vol. 58 1922–1940 (2022) – 10.1109/taes.2021.3123295
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283