Topological geometric extension of Stokes-Dirac structures for global energy flows
Authors
Abstract
This paper proposes an extended Stokes-Dirac structure for describing a global structure of port-Hamiltonian systems defined on manifolds with non-trivial topology under consistent boundary conditions. For the aim, the relationship between the Stokes-Dirac structure and the topological geometry of the manifolds is clarified in terms of harmonic differential forms.
Citation
- Journal: 2019 18th European Control Conference (ECC)
- Year: 2019
- Volume:
- Issue:
- Pages: 1878–1883
- Publisher: IEEE
- DOI: 10.23919/ecc.2019.8796019
BibTeX
@inproceedings{Nishida_2019,
title={{Topological geometric extension of Stokes-Dirac structures for global energy flows}},
DOI={10.23919/ecc.2019.8796019},
booktitle={{2019 18th European Control Conference (ECC)}},
publisher={IEEE},
author={Nishida, Gou and Maschke, Bernhard},
year={2019},
pages={1878--1883}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Macchelli, A. Dirac Structures and Control by Interconnection for Distributed Port-Hamiltonian Systems. Lecture Notes in Control and Information Sciences 21–36 (2015) doi:10.1007/978-3-319-20988-3_2 – 10.1007/978-3-319-20988-3_2
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik vol. 65 308–322 (2017) – 10.1515/auto-2016-0098
- Morita, S. Geometry of Differential Forms. Translations of Mathematica Monographs (2001) doi:10.1090/mmono/201 – 10.1090/mmono/201
- Nishida, G., Enomoto, R., Yamakita, M. & Luo, Z. PORT-BASED ENERGY BALANCE ON COMPACT MANIFOLDS. IFAC Proceedings Volumes vol. 40 480–485 (2007) – 10.3182/20070822-3-za-2920.00079
- Nishida, G., Maschke, B. & Ikeura, R. Boundary Integrability of Multiple Stokes–Dirac Structures. SIAM Journal on Control and Optimization vol. 53 800–815 (2015) – 10.1137/110856058
- Cantarella, J., DeTurck, D. & Gluck, H. Vector Calculus and the Topology of Domains in 3-Space. The American Mathematical Monthly vol. 109 409–442 (2002) – 10.2307/2695643
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Schwarz, G. Hodge Decomposition—A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 1995). doi:10.1007/bfb0095978 – 10.1007/bfb0095978
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7