Authors

K. Fujimoto, J.M.A. Scherpen

Abstract

The paper is concerned with the output feedback stabilization of a class of nonholonomic systems in port-controlled Hamiltonian formulae via generalized canonical transformations. In order to obtain a dynamic feedback, an integrator is added to the system firstly. Then the generalized canonical transformation is utilized to let the integrator play the role of an estimator of the unmeasurable state based on passivity. This technique can derive a time-varying output feedback stabilizing controller under a certain assumption. Furthermore the effectiveness of the proposed technique is demonstrated via a well known knife edge example.

Citation

  • Journal: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)
  • Year: 2002
  • Volume: 3
  • Issue:
  • Pages: 2928–2933
  • Publisher: IEEE
  • DOI: 10.1109/cdc.2000.914260

BibTeX

@inproceedings{Fujimoto,
  series={CDC-00},
  title={{Time-varying output feedback stabilization of a class of nonholonomic Hamiltonian systems via canonical transformations}},
  volume={3},
  DOI={10.1109/cdc.2000.914260},
  booktitle={{Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)}},
  publisher={IEEE},
  author={Fujimoto, K. and Scherpen, J.M.A.},
  pages={2928--2933},
  collection={CDC-00}
}

Download the bib file

References

  • ortega, Stabilization of port-controlled Hamiltonian systems: passivity and energy-balancing. Proc IEEE CDC (1999)
  • Pomet, J.-B. Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems & Control Letters 18, 147–158 (1992) – 10.1016/0167-6911(92)90019-o
  • stramigioli, Passive output feedback and port interconnection. Proc 4th IFAC Symp Nonlinear Control Systems (1998)
  • Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
  • van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 10, 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
  • Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
  • fujimoto, Time-varying stabilization of nonholonomic Hamiltonian systems via canonical transformations. Proc American Control Conference (2000)
  • fujimoto, Time-varying stabilization of Hamiltonian systems via generalized canonical transformations. Proc IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2000)
  • maschke, Port-controlled Hamiltonian systems: modelling origins and system-theoretic properties. IFAC Symp Nonlinear Control Systems (1992)
  • Khennouf, H., Canudas de Wit, C. & van der Schaft, A. J. Preliminary results on asymptotic stabilization of Hamiltonian systems with nonholonomic constraints. Proceedings of 1995 34th IEEE Conference on Decision and Control vol. 4 4305–4310 – 10.1109/cdc.1995.478917
  • Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
  • Maschke, B. M. & van der Schaft, A. J. A Hamiltonian approach to stabilization of nonholonomic mechanical systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control vol. 3 2950–2954 – 10.1109/cdc.1994.411344
  • FUJIMOTO, K., OGA, A. & SUGIE, T. Nonlinear Controller Design for Linear Systems via the Parametrization of Nonlinear Stabilizing Controllers. Transactions of the Institute of Systems, Control and Information Engineers 11, 623–629 (1998) – 10.5687/iscie.11.623
  • Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3