The stability of a synchronous generator with a prime mover connected to a resistive load
Authors
Zeev Kustanovich, George Weiss
Abstract
We present the stability analysis of a system which contains a synchronous generator (SG) with its prime mover and a resistive load. Inductive transmission lines connect between these. The model of the SG and its prime mover includes a frequency droop loop that acts through the prime mover and its governor, with its own dynamics. The SG model takes into account the variation of the inductances with the rotor angle. We derive a mathematical model of the system that takes into account a simplified model of the damper windings and is a fifth order nonlinear system. We present sufficient conditions on the model’s parameters to insure local stability for the system. We strive to find sufficient conditions that are easy to verify. We use Lyapunov functions and the port-Hamiltonian representation.
Citation
- Journal: 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)
- Year: 2018
- Volume:
- Issue:
- Pages: 1–5
- Publisher: IEEE
- DOI: 10.1109/icsee.2018.8646017
BibTeX
@inproceedings{Kustanovich_2018,
title={{The stability of a synchronous generator with a prime mover connected to a resistive load}},
DOI={10.1109/icsee.2018.8646017},
booktitle={{2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)}},
publisher={IEEE},
author={Kustanovich, Zeev and Weiss, George},
year={2018},
pages={1--5}
}
References
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19, 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- grainer, Power System Analysis (1994)
- kimbark, Power System Stability (1956)
- kundur, Power System Stability and Control (2004)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Natarajan, V. & Weiss, G. Almost global asymptotic stability of a constant field current synchronous machine connected to an infinite bus. 53rd IEEE Conference on Decision and Control 3272–3279 (2014) doi:10.1109/cdc.2014.7039895 – 10.1109/cdc.2014.7039895
- Natarajan, V. & Weiss, G. Almost global asymptotic stability of a grid-connected synchronous generator. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0216-2
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rogers, G. Power System Oscillations. (Springer US, 2000). doi:10.1007/978-1-4615-4561-3 – 10.1007/978-1-4615-4561-3
- Baimel, D., Belikov, J., Guerrero, J. M. & Levron, Y. Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey. IEEE Access 5, 21323–21335 (2017) – 10.1109/access.2017.2758523
- Barabanov, N., Schiffer, J., Ortega, R. & Efimov, D. Conditions for Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus. IEEE Trans. Automat. Contr. 62, 4905–4916 (2017) – 10.1109/tac.2017.2671026
- caliskan, Towards a compositional analysis of multi machine power system transient stability. 52th IEEE Conf On Decision and Control (2016)
- bergen, Power System Analysis (1999)
- Dörfler, F. & Bullo, F. Synchronization and Transient Stability in Power Networks and Nonuniform Kuramoto Oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012) – 10.1137/110851584
- Caliskan, S. Y. & Tabuada, P. Compositional Transient Stability Analysis of Multimachine Power Networks. IEEE Trans. Control Netw. Syst. 1, 4–14 (2014) – 10.1109/tcns.2014.2304868
- Barabanov, N., Schiffer, J., Ortega, R. & Efimov, D. Almost global attractivity of a synchronous generator connected to an infinite bus. 2016 IEEE 55th Conference on Decision and Control (CDC) 4130–4135 (2016) doi:10.1109/cdc.2016.7798895 – 10.1109/cdc.2016.7798895
- arghir, On the steady state behavior of a nonlinear power network model. IFAC-PapersOnLine (2016)
- Dörfler, F. & Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica 50, 1539–1564 (2014) – 10.1016/j.automatica.2014.04.012
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica 74, 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Zhong, Q.-C. & Weiss, G. Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Trans. Ind. Electron. 58, 1259–1267 (2011) – 10.1109/tie.2010.2048839