Symmetries and Conservation Laws for Implicit Port-Controlled Hamiltonian Systems
Authors
G. Blankenstein, A.J. van der Schaft
Abstract
In this paper we describe the correspondence between symmetries and conservation laws of implicit port-controlled generalized Hamiltonian systems. Furthermore, symmetries of interconnected implicit Hamiltonian systems are studied.
Keywords
conserved quantities; conservation laws; implicit systems; interconnected systems; mechanical systems; nonlinear control systems; symmetry
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2000
- Volume: 33
- Issue: 2
- Pages: 93–98
- Publisher: Elsevier BV
- DOI: 10.1016/s1474-6670(17)35553-2
- Note: IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Princeton, NJ, USA, 16-18 March 2000
BibTeX
@article{Blankenstein_2000,
title={{Symmetries and Conservation Laws for Implicit Port-Controlled Hamiltonian Systems}},
volume={33},
ISSN={1474-6670},
DOI={10.1016/s1474-6670(17)35553-2},
number={2},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Blankenstein, G. and van der Schaft, A.J.},
year={2000},
pages={93--98}
}
References
- Abraham, (1978)
- Blankenstein, Closedness of interconnected Dirac structures. (1998)
- Blankenstein, Reduction of implicit Hamiltonian systems with symmetry. (1999)
- Blankenstein, Symmetry and reduction in implicit generalized Hamiltonian systems. Faculty of Mathematical Sciences (1999)
- Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. & Murray, R. M. Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996) – 10.1007/bf02199365
- Cantrijn, F., de León, M., Marrero, J. C. & Martı́n de Diego, D. Reduction of constrained systems with symmetries. Journal of Mathematical Physics 40, 795–820 (1999) – 10.1063/1.532686
- Courant, Dirac manifolds. Trans. American Math. Soc (1990)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Marsden, J. E. & Ratiu, T. Reduction of Poisson manifolds. Lett Math Phys 11, 161–169 (1986) – 10.1007/bf00398428
- Maschke, Interconnected mechanical systems, part II: the dynamics of spatial mechanical networks. (1997)
- van der Schaft, A. Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: A generalization of Noether’s theorem. Systems & Control Letters 1, 108–115 (1981) – 10.1016/s0167-6911(81)80046-1
- van der Schaft, A. J. Implicit Hamiltonian systems with symmetry. Reports on Mathematical Physics 41, 203–221 (1998) – 10.1016/s0034-4877(98)80176-6
- van der Schaft, A. & Maschke, B. Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems. Modelling and Control of Mechanical Systems 1–15 (1997) doi:10.1142/9781848160873_0001 – 10.1142/9781848160873_0001