Sufficient Conditions for Global Boundedness of Solutions for Two Coupled Synchronverters
Authors
Angel Mercado-Uribe, Jesús Mendoza-Ávila, Denis Efimov, Johannes Schiffer
Abstract
This paper analyzes two synchronverters connected in parallel to a common capacitive-resistive load through resistive-inductive power lines. This system is conceptualized as a microgrid with two renewable energy sources controlled using the synchronverter algorithm. It is modeled as an interconnection of three port-Hamiltonian systems, and the dq-coordinates model is derived by averaging the frequencies. Applying the recent Leonov function theory, sufficient conditions to guarantee the global boundedness of the whole system’s trajectories are provided. This is necessary to reach the global synchronization of microgrids. Additionally, a numerical example illustrates the potential resonance behavior of the microgrid.
Citation
- Journal: 2024 IEEE 63rd Conference on Decision and Control (CDC)
- Year: 2024
- Volume:
- Issue:
- Pages: 2785–2790
- Publisher: IEEE
- DOI: 10.1109/cdc56724.2024.10886006
BibTeX
@inproceedings{Mercado_Uribe_2024,
title={{Sufficient Conditions for Global Boundedness of Solutions for Two Coupled Synchronverters}},
DOI={10.1109/cdc56724.2024.10886006},
booktitle={{2024 IEEE 63rd Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Mercado-Uribe, Angel and Mendoza-Ávila, Jesús and Efimov, Denis and Schiffer, Johannes},
year={2024},
pages={2785--2790}
}References
- Anderson, P. M. & Fouad, A. A. Power System Control and Stability. (2002) doi:10.1109/9780470545577 – 10.1109/9780470545577
- Barabanov, N., Schiffer, J., Ortega, R. & Efimov, D. Conditions for Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus. IEEE Trans. Automat. Contr. 62, 4905–4916 (2017) – 10.1109/tac.2017.2671026
- Blau, Synchronverters used for damping inter-area oscillations in two-area power systems. Renewable Energy and Power Quality Journal (2018)
- Caliskan, S. Y. & Tabuada, P. Compositional Transient Stability Analysis of Multimachine Power Networks. IEEE Trans. Control Netw. Syst. 1, 4–14 (2014) – 10.1109/tcns.2014.2304868
- Caliskan, S. Y. & Tabuada, P. Correction to “Compositional Transient Stability Analysis of Multimachine Power Networks”. IEEE Trans. Control Netw. Syst. 4, 676–677 (2017) – 10.1109/tcns.2016.2524986
- Chowdhury, S., Chowdhury, S. P. & Crossley, P. Microgrids and Active Distribution Networks. (Institution of Engineering and Technology, 2009). doi:10.1049/pbrn006e – 10.1049/pbrn006e
- Dörfler, F. & Bullo, F. Synchronization and Transient Stability in Power Networks and Nonuniform Kuramoto Oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012) – 10.1137/110851584
- Efimov, D. & Schiffer, J. On Boundedness of Solutions of State Periodic Systems: A Multivariable Cell Structure Approach. IEEE Trans. Automat. Contr. 64, 4094–4104 (2019) – 10.1109/tac.2019.2892395
- Efimov, D., Schiffer, J., Barabanov, N. & Ortega, R. A relaxed characterization of ISS for periodic systems with multiple invariant sets. European Journal of Control 37, 1–7 (2017) – 10.1016/j.ejcon.2017.04.002
- Farhangi, H. The path of the smart grid. IEEE Power and Energy Mag. 8, 18–28 (2010) – 10.1109/mpe.2009.934876
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19, 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Groß, D., Arghir, C. & Dörfler, F. On the steady-state behavior of a nonlinear power system model. Automatica 90, 248–254 (2018) – 10.1016/j.automatica.2017.12.057
- Hatziargyriou, N. et al. Definition and Classification of Power System Stability – Revisited & Extended. IEEE Trans. Power Syst. 36, 3271–3281 (2021) – 10.1109/tpwrs.2020.3041774
- Krishna, A., Jaramillo-Cajica, I., Auer, S. & Schiffer, J. A power-hardware-in-the-loop testbed for intelligent operation and control of low-inertia power systems. at - Automatisierungstechnik 70, 1084–1095 (2022) – 10.1515/auto-2022-0025
- Leonov, G. A. On the boundedness of the trajectories of phase systems. Sib Math J 15, 491–495 (1975) – 10.1007/bf00969820
- Machowski, Power System Dynamics: Stability and Control.
- Mercado–Uribe, A., Mendoza-Ávila, J., Efimov, D. & Schiffer, J. A Control Leonov Function Guaranteeing Global ISS of Two Coupled Synchronverters. 2023 62nd IEEE Conference on Decision and Control (CDC) 4580–4585 (2023) doi:10.1109/cdc49753.2023.10383811 – 10.1109/cdc49753.2023.10383811
- Milano, F., Dörfler, F., Hug, G., Hill, D. J. & Verbič, G. Foundations and Challenges of Low-Inertia Systems (Invited Paper). 2018 Power Systems Computation Conference (PSCC) 1–25 (2018) doi:10.23919/pscc.2018.8450880 – 10.23919/pscc.2018.8450880
- Natarajan, V. & Weiss, G. Synchronverters With Better Stability Due to Virtual Inductors, Virtual Capacitors, and Anti-Windup. IEEE Trans. Ind. Electron. 64, 5994–6004 (2017) – 10.1109/tie.2017.2674611
- Paolone, M. et al. Fundamentals of power systems modelling in the presence of converter-interfaced generation. Electric Power Systems Research 189, 106811 (2020) – 10.1016/j.epsr.2020.106811
- Rüdenberg, Transient Performance of Electric Power Systems: Phenomena in Lumped Networks. McGraw-Hill
- Schiffer, J. & Efimov, D. Strong and Weak Leonov Functions for Global Boundedness of State Periodic Systems. IEEE Trans. Automat. Contr. 68, 7958–7965 (2023) – 10.1109/tac.2023.3251903
- Schiffer, J., Efimov, D. & Ortega, R. Global synchronization analysis of droop-controlled microgrids—A multivariable cell structure approach. Automatica 109, 108550 (2019) – 10.1016/j.automatica.2019.108550
- Schiffer, J., Efimov, D., Ortega, R. & Barabanov, N. An input-to-state stability approach to verify almost global stability of a synchronous-machine-infinite-bus system. Phil. Trans. R. Soc. A. 375, 20160304 (2017) – 10.1098/rsta.2016.0304
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica 74, 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- Venezian, E. & Weiss, G. A warning about the use of reduced models of synchronous generators. 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE) 1–5 (2016) doi:10.1109/icsee.2016.7806190 – 10.1109/icsee.2016.7806190
- Venkatasubramanian, V., Schattler, H. & Zaborszky, J. Fast time-varying phasor analysis in the balanced three-phase large electric power system. IEEE Trans. Automat. Contr. 40, 1975–1982 (1995) – 10.1109/9.471228
- Weiss, G. & Venezian, E. Stability analysis for coupled synchronous generators with virtual friction. 2017 22nd International Conference on Digital Signal Processing (DSP) 1–5 (2017) doi:10.1109/icdsp.2017.8096104 – 10.1109/icdsp.2017.8096104
- Winter, W., Elkington, K., Bareux, G. & Kostevc, J. Pushing the Limits: Europe’s New Grid: Innovative Tools to Combat Transmission Bottlenecks and Reduced Inertia. IEEE Power and Energy Mag. 13, 60–74 (2015) – 10.1109/mpe.2014.2363534
- Zhong, Q.-C. & Weiss, G. Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Trans. Ind. Electron. 58, 1259–1267 (2011) – 10.1109/tie.2010.2048839