Study of Hamiltonian Energy Control of Multiphase Interleaved Fuel Cell Boost Converter
Authors
Pongsiri Mungporn, Burin Yodwong, Phatiphat Thounthong, Chainarin Ekkaravarodome, Anusak Bilsalam, Babak Nahid-Mobarakeh, Serge Pierfederici, Damien Guilbert, Nicu Bizon, Surin Khomfoi, Poom Kumam, Zahir Shah, Piyabut Burikham, Chaiyut Kaewprapha
Abstract
This paper studys a multi-phase boost converter for fuel cell (FC) applications. An original control law based on the Hamiltonian energy control principle for dc microgrid is considered. Using the port-controlled Hamiltonian property, we propose simple solutions to the system performance and stabilization problems when the interaction between power sources and constant power loads (CPLs). To corroborate the proposed control law, a prototype FC power converter (2.5-kW two-phase boost converter) is implemented in the laboratory. The Methanol FC system includes a fuel reformer that converts methanol and water liquid fuel into hydrogen gas to polymer electrolyte membrane FC (PEMFC) stack (2.5-kW, 50 V). The proposed control approach is realized with a digital estimate in a dSPACE MicroLabBox controller card. The experimental and simulation results verify that this is a good control scheme during constant power load cycles.
Citation
- Journal: 2019 Research, Invention, and Innovation Congress (RI2C)
- Year: 2019
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/ri2c48728.2019.8999956
BibTeX
@inproceedings{Mungporn_2019,
title={{Study of Hamiltonian Energy Control of Multiphase Interleaved Fuel Cell Boost Converter}},
DOI={10.1109/ri2c48728.2019.8999956},
booktitle={{2019 Research, Invention, and Innovation Congress (RI2C)}},
publisher={IEEE},
author={Mungporn, Pongsiri and Yodwong, Burin and Thounthong, Phatiphat and Ekkaravarodome, Chainarin and Bilsalam, Anusak and Nahid-Mobarakeh, Babak and Pierfederici, Serge and Guilbert, Damien and Bizon, Nicu and Khomfoi, Surin and Kumam, Poom and Shah, Zahir and Burikham, Piyabut and Kaewprapha, Chaiyut},
year={2019},
pages={1--6}
}
References
- Gavagsaz‐Ghoachani, R. et al. Active stabilisation design of DC–DC converters with constant power load using a sampled discrete‐time model: stability analysis and experimental verification. IET Power Electronics 11, 1519–1528 (2018) – 10.1049/iet-pel.2017.0670
- Kardan, M. A. et al. Improved Stabilization of Nonlinear DC Microgrids: Cubature Kalman Filter Approach. IEEE Trans. on Ind. Applicat. 54, 5104–5112 (2018) – 10.1109/tia.2018.2848959
- Montoya, O. D., Gil-Gonzalez, W. & Serra, F. M. PBC Approach for SMES Devices in Electric Distribution Networks. IEEE Trans. Circuits Syst. II 65, 2003–2007 (2018) – 10.1109/tcsii.2018.2805774
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 63, 1032–1044 (2018) – 10.1109/tac.2017.2732283
- Liu, Z., Geng, Z. & Hu, X. An Approach to Suppress Low Frequency Oscillation in the Traction Network of High-Speed Railway Using Passivity-Based Control. IEEE Trans. Power Syst. 33, 3909–3918 (2018) – 10.1109/tpwrs.2018.2789450
- Lei, Y., Lin, X. & Zhu, Y. Passivity-Based Control Strategy for SMES Under an Unbalanced Voltage Condition. IEEE Access 6, 28768–28776 (2018) – 10.1109/access.2018.2831251
- Fu, B., Wang, Q. & He, W. Nonlinear Disturbance Observer-Based Control for a Class of Port-Controlled Hamiltonian Disturbed Systems. IEEE Access 6, 50299–50305 (2018) – 10.1109/access.2018.2868919
- Thounthong, P. & Davat, B. Study of a multiphase interleaved step-up converter for fuel cell high power applications. Energy Conversion and Management 51, 826–832 (2010) – 10.1016/j.enconman.2009.11.018
- Thounthong, P. & Pierfederici, S. A New Control Law Based on the Differential Flatness Principle for Multiphase Interleaved DC–DC Converter. IEEE Trans. Circuits Syst. II 57, 903–907 (2010) – 10.1109/tcsii.2010.2082830
- Sethakul, P., Rael, S., Davat, B. & Thounthong, P. Fuel cell high-power applications. EEE Ind. Electron. Mag. 3, 32–46 (2009) – 10.1109/mie.2008.930365
- Bizon, N. & Thounthong, P. Fuel economy using the global optimization of the Fuel Cell Hybrid Power Systems. Energy Conversion and Management 173, 665–678 (2018) – 10.1016/j.enconman.2018.08.015
- Thounthong, P., Davat, B., Rael, S. & Sethakul, P. Fuel starvation. IEEE Ind. Appl. Mag. 15, 52–59 (2009) – 10.1109/mias.2009.932604
- Bizon, N., Thounthong, P., Raducu, M. & Constantinescu, L. M. Designing and modelling of the asymptotic perturbed extremum seeking control scheme for tracking the global extreme. International Journal of Hydrogen Energy 42, 17632–17644 (2017) – 10.1016/j.ijhydene.2017.01.086
- Rahimi, A. M. & Emadi, A. An Analytical Investigation of DC/DC Power Electronic Converters With Constant Power Loads in Vehicular Power Systems. IEEE Trans. Veh. Technol. 58, 2689–2702 (2009) – 10.1109/tvt.2008.2010516
- Slah, F., Mansour, A., Hajer, M. & Faouzi, B. Analysis, modeling and implementation of an interleaved boost DC-DC converter for fuel cell used in electric vehicle. International Journal of Hydrogen Energy 42, 28852–28864 (2017) – 10.1016/j.ijhydene.2017.08.068
- Fathabadi, H. Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Conversion and Management 156, 192–201 (2018) – 10.1016/j.enconman.2017.11.001
- Zhou, D., Al-Durra, A., Matraji, I., Ravey, A. & Gao, F. Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles: A Fractional-Order Extremum Seeking Method. IEEE Trans. Ind. Electron. 65, 6787–6799 (2018) – 10.1109/tie.2018.2803723
- Magne, P., Marx, D., Nahid-Mobarakeh, B. & Pierfederici, S. Large-Signal Stabilization of a DC-Link Supplying a Constant Power Load Using a Virtual Capacitor: Impact on the Domain of Attraction. IEEE Trans. on Ind. Applicat. 48, 878–887 (2012) – 10.1109/tia.2012.2191250