PBC Approach for SMES Devices in Electric Distribution Networks
Authors
O. D. Montoya, W. Gil-Gonzalez, F. M. Serra
Abstract
This express brief presents a nonlinear active and reactive power control for a superconducting magnetic energy storage (SMES) system connected in three-phase distribution networks using pulse-width modulated current-source converter (PWM-CSC). The passivity-based control (PBC) theory is selected as a nonlinear control technique, since the open-loop dynamical model exhibits a port-Hamiltonian (pH) structure. The PBC theory exploits the pH structure of the open-loop dynamical system to design a general control law, which preserves the passive structure in closed-loop via interconnection and damping reassignment. Additionally, the PBC theory guarantees globally asymptotically stability in the sense of Lyapunov for the closed-loop dynamical system. Simulation results in a three-phase radial distribution network show the possibility to control the active and reactive power independently as well as the possibility to use the SMES system connected through a PWM-CSC as a dynamic power factor compensator for time-varying loads. All simulations are conducted in a MATLAB/ODE package.
Citation
- Journal: IEEE Transactions on Circuits and Systems II: Express Briefs
- Year: 2018
- Volume: 65
- Issue: 12
- Pages: 2003–2007
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tcsii.2018.2805774
BibTeX
@article{Montoya_2018,
title={{PBC Approach for SMES Devices in Electric Distribution Networks}},
volume={65},
ISSN={1558-3791},
DOI={10.1109/tcsii.2018.2805774},
number={12},
journal={IEEE Transactions on Circuits and Systems II: Express Briefs},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Montoya, O. D. and Gil-Gonzalez, W. and Serra, F. M.},
year={2018},
pages={2003--2007}
}
References
- Zheng Wang, Zhixiang Zou & Yang Zheng. Design and Control of a Photovoltaic Energy and SMES Hybrid System With Current-Source Grid Inverter. IEEE Transactions on Applied Superconductivity vol. 23 5701505–5701505 (2013) – 10.1109/tasc.2013.2250172
- Nguyen, T.-T., Yoo, H.-J. & Kim, H.-M. Applying Model Predictive Control to SMES System in Microgrids for Eddy Current Losses Reduction. IEEE Transactions on Applied Superconductivity vol. 26 1–5 (2016) – 10.1109/tasc.2016.2524511
- Shanchuan Wang & Jianxun Jin. Design and Analysis of a Fuzzy Logic Controlled SMES System. IEEE Transactions on Applied Superconductivity vol. 24 1–5 (2014) – 10.1109/tasc.2014.2348562
- Hemeida, A. M. A fuzzy logic controlled superconducting magnetic energy storage, SMES frequency stabilizer. Electric Power Systems Research vol. 80 651–656 (2010) – 10.1016/j.epsr.2009.10.021
- Ali, M. H., Wu, B., Tamura, J. & Dougal, R. A. Minimization of shaft oscillations by fuzzy controlled SMES considering time delay. Electric Power Systems Research vol. 80 770–777 (2010) – 10.1016/j.epsr.2009.12.001
- Liu, F. et al. Experimental Evaluation of Nonlinear Robust Control for SMES to Improve the Transient Stability of Power Systems. IEEE Transactions on Energy Conversion vol. 19 774–782 (2004) – 10.1109/tec.2004.827703
- Mahmud, M. A., Hossain, M. J. & Pota, H. R. Dynamical modeling and nonlinear control of superconducting magnetic energy systems: Applications in power systems. 2014 Australasian Universities Power Engineering Conference (AUPEC) 1–6 (2014) doi:10.1109/aupec.2014.6966593 – 10.1109/aupec.2014.6966593
- gil-gonzález, IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC. Proc 7th Annu IEEE Green Technol Conf (GreenTech) (2017)
- Gao, Y., Sun, B. & Lu, G. Passivity-Based Integral Sliding-Mode Control of Uncertain Singularly Perturbed Systems. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 58 386–390 (2011) – 10.1109/tcsii.2011.2149690
- Yanbo Gao, Guoping Lu & Zhiming Wang. Passivity Analysis of Uncertain Singularly Perturbed Systems. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 57 486–490 (2010) – 10.1109/tcsii.2010.2048378
- Jing Shi et al. SMES Based Dynamic Voltage Restorer for Voltage Fluctuations Compensation. IEEE Transactions on Applied Superconductivity vol. 20 1360–1364 (2010) – 10.1109/tasc.2010.2041499
- chapman, Electric Machinery Fundamentals (2005)
- zobaa, Energy storage and application (2013)
- Ortega, A. & Milano, F. Generalized Model of VSC-Based Energy Storage Systems for Transient Stability Analysis. IEEE Transactions on Power Systems vol. 31 3369–3380 (2016) – 10.1109/tpwrs.2015.2496217
- Gil-Gonzalez, W., Montoya, O. D., Garces, A. & Escobar-Mejia, A. Supervisory LMI-Based State-Feedback Control for Current Source Power Conditioning of SMES. 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech) 145–150 (2017) doi:10.1109/greentech.2017.27 – 10.1109/greentech.2017.27
- Jing Shi, Yuejin Tang, Li Ren, Jingdong Li & Shijie Cheng. Discretization-Based Decoupled State-Feedback Control for Current Source Power Conditioning System of SMES. IEEE Transactions on Power Delivery vol. 23 2097–2104 (2008) – 10.1109/tpwrd.2008.921117
- Hayashi, H. et al. Test Results of Power System Control by Experimental SMES. IEEE Transactions on Applied Superconductivity vol. 16 598–601 (2006) – 10.1109/tasc.2006.871331
- Ali, Mohd. H., Wu, B. & Dougal, R. A. An Overview of SMES Applications in Power and Energy Systems. IEEE Transactions on Sustainable Energy vol. 1 38–47 (2010) – 10.1109/tste.2010.2044901
- Ngamroo, I. Simultaneous Optimization of SMES Coil Size and Control Parameters for Robust Power System Stabilization. IEEE Transactions on Applied Superconductivity vol. 21 1358–1361 (2011) – 10.1109/tasc.2010.2098011
- Zakeri, B. & Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews vol. 42 569–596 (2015) – 10.1016/j.rser.2014.10.011
- Sanchez, S., Ortega, R., Grino, R., Bergna, G. & Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 61 2204–2211 (2014) – 10.1109/tcsi.2013.2295953
- Li, J., Liu, Y., Li, C. & Chu, B. Passivity-Based Nonlinear Excitation Control of Power Systems with Structure Matrix Reassignment. Information vol. 4 342–350 (2013) – 10.3390/info4030342
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Transactions on Automatic Control vol. 61 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Gaviria, C., Fossas, E. & Grino, R. Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 52 609–616 (2005) – 10.1109/tcsi.2004.842881
- Serra, F. M. & De Angelo, C. H. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electric Power Systems Research vol. 142 12–19 (2017) – 10.1016/j.epsr.2016.08.041