Structure Preserving Port-Hamiltonian Model Reduction of Electrical Circuits
Authors
Rostylav V. Polyuga, Arjan J. van der Schaft
Abstract
This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the port-Hamiltonian structure. Energy and co-energy variable representations for port-Hamiltonian systems are defined and the reduction procedures are used for both representations. These exact reduction procedures motivate two approximate reduction procedures that are structure preserving for general port-Hamiltonian systems, one reduction procedure is called the effort-constraint reduction methods. The other procedure is structure preserving under a given condition. A numerical example illustrating the model reduction of a ladder network as a port-Hamiltonian system is considered.
Citation
- ISBN: 9789400700888
- Publisher: Springer Netherlands
- DOI: 10.1007/978-94-007-0089-5_14
BibTeX
@inbook{Polyuga_2011,
title={{Structure Preserving Port-Hamiltonian Model Reduction of Electrical Circuits}},
ISBN={9789400700895},
ISSN={1876-1119},
DOI={10.1007/978-94-007-0089-5_14},
booktitle={{Model Reduction for Circuit Simulation}},
publisher={Springer Netherlands},
author={Polyuga, Rostylav V. and van der Schaft, Arjan J.},
year={2011},
pages={241--260}
}
References
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Fernando, K. & Nicholson, H. Singular perturbational model reduction of balanced systems. IEEE Trans. Automat. Contr. 27, 466–468 (1982) – 10.1109/tac.1982.1102932
- GLOVER, K. All optimal Hankel-norm approximations of linear multivariable systems and theirL,∞-error bounds†. International Journal of Control 39, 1115–1193 (1984) – 10.1080/00207178408933239
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26, 17–32 (1981) – 10.1109/tac.1981.1102568
- Polderman, J. W. & Willems, J. C. Introduction to Mathematical Systems Theory. Texts in Applied Mathematics (Springer New York, 1998). doi:10.1007/978-1-4757-2953-5 – 10.1007/978-1-4757-2953-5
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. On balancing of passive systems. 2007 European Control Conference (ECC) 4173–4178 (2007) doi:10.23919/ecc.2007.7068599 – 10.23919/ecc.2007.7068599
- Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters 54, 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493