On balancing of passive systems
Authors
Abstract
It is shown how the application of various standard balancing techniques to general lossless systems basically leads to the same result: the pair of to-be-balanced functions is given by two copies of the energy function. Hence balancing will not yield any information about the relative importance of the state components in a balanced realization. This result is extended to the lossy case, indicating that balancing in this case will largely depend on the internal energy dissipation. By using the representation of passive systems as port-Hamiltonian systems a direction for extending standard balancing is discussed.
Citation
- Journal: 2007 European Control Conference (ECC)
- Year: 2007
- Volume:
- Issue:
- Pages: 4173–4178
- Publisher: IEEE
- DOI: 10.23919/ecc.2007.7068599
BibTeX
@inproceedings{van_der_Schaft_2007,
title={{On balancing of passive systems}},
DOI={10.23919/ecc.2007.7068599},
booktitle={{2007 European Control Conference (ECC)}},
publisher={IEEE},
author={van der Schaft, Arjan},
year={2007},
pages={4173--4178}
}
References
- van der Schaft, A. J. & Oeloff, J. E. Model reduction of linear conservative mechanical systems. IEEE Trans. Automat. Contr. 35, 729–733 (1990) – 10.1109/9.53555
- van der schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch Elektron Ubertragungstechn (1995)
- weiland, Theory of Approximation and Disturbance Attenuation for Linear Systems (1991)
- Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters 54, 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
- van der schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Lect Notes in Control and Information Sciences Vol 218 Springer-Verlag Berlin 1996 p 168 2nd revised and enlarged edition (0)
- SCHERPEN, J. M. A. & VAN DER SCHAFT, A. J. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control 60, 1193–1222 (1994) – 10.1080/00207179408921517
- Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters 54, 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
- abraham, Foundations of Mechanics. (1978)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26, 17–32 (1981) – 10.1109/tac.1981.1102568
- meirovitch, Analytical Methods in Vibrations. (1967)
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters 21, 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- escobar, A Hamiltonian viewpoint in the modelling of switching power converters. Automatica Special Issue on Hybrid Systems (1999)
- Camlibel, M. K., Heemels, W. P. M. H., van der Schaft, A. J. & Schumacher, J. M. Switched networks and complementarity. IEEE Trans. Circuits Syst. I 50, 1036–1046 (2003) – 10.1109/tcsi.2003.815195
- Jonckheere, E. & Silverman, L. A new set of invariants for linear systems–Application to reduced order compensator design. IEEE Trans. Automat. Contr. 28, 953–964 (1983) – 10.1109/tac.1983.1103159
- Hill, D. & Moylan, P. The stability of nonlinear dissipative systems. IEEE Trans. Automat. Contr. 21, 708–711 (1976) – 10.1109/tac.1976.1101352