Balanced realization and model reduction of port-Hamiltonian systems
Authors
Abstract
This paper is concerned with nonlinear model reduction for electro-mechanical systems described by port-Hamiltonian formulae. A novel weighted balanced realization and model reduction procedure is proposed which preserves port-Hamiltonian structure as well as stability, reachability and observability of the original system. This implies that one can utilize the intrinsic physical properties such as physical energy and the corresponding dissipativity for the reduced order model. Further, the proposed method reduces the computational effort in solving partial differential equations for nonlinear balanced realization. A numerical simulation shows how the proposed method works.
Citation
- Journal: 2007 American Control Conference
- Year: 2007
- Volume:
- Issue:
- Pages: 930–934
- Publisher: IEEE
- DOI: 10.1109/acc.2007.4282653
BibTeX
@inproceedings{Fujimoto_2007,
title={{Balanced realization and model reduction of port-Hamiltonian systems}},
ISSN={0743-1619},
DOI={10.1109/acc.2007.4282653},
booktitle={{2007 American Control Conference}},
publisher={IEEE},
author={Fujimoto, Kenji and Kajiura, Hideo},
year={2007},
pages={930--934}
}
References
- newman, Computing balanced realizations for nonlinear systems. Proc Int Symp Math Theory of Networks and Syst (2000)
- Newman, A. J. & Krishnaprasad, P. S. Computation for nonlinear balancing. Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171) vol. 4 4103–4104 – 10.1109/cdc.1998.761942
- Obinata, G. & Anderson, B. D. O. Model Reduction for Control System Design. Communications and Control Engineering (Springer London, 2001). doi:10.1007/978-1-4471-0283-0 – 10.1007/978-1-4471-0283-0
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters 21, 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- scherpen, Minimality and local state decompositions of a nonlinear state space realization using energy functions. IEEE Trans Autom Contr (2000)
- SCHERPEN, J. M. A. & VAN DER SCHAFT, A. J. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control 60, 1193–1222 (1994) – 10.1080/00207179408921517
- tsubakino, Weighted balanced realization and model reduction for nonlinear systems. In Proc Symp Mathematical Theory and Network Systems 2006 (2006)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Vorst, H. A. Iterative Krylov Methods for Large Linear Systems. (2003) doi:10.1017/cbo9780511615115 – 10.1017/cbo9780511615115
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Fujimoto, K. & Scherpen, J. M. A. Nonlinear input-normal realizations based on the differential eigenstructure of Hankel operators. IEEE Trans. Automat. Contr. 50, 2–18 (2005) – 10.1109/tac.2004.840476
- Fujimoto, K. & Tsubakino, D. On computation of nonlinear balanced realization and model reduction. 2006 American Control Conference 6 pp. (2006) doi:10.1109/acc.2006.1655399 – 10.1109/acc.2006.1655399
- Fujimoto, K. & Sugie, T. Iterative learning control of hamiltonian systems: I/O based optimal control approach. IEEE Trans. Automat. Contr. 48, 1756–1761 (2003) – 10.1109/tac.2003.817908
- lopezlena, Energy-storage balanced reduction of port Hamiltonian systems. IFAC Work on Lagrangian and Hamiltonian Methods in Nonlinear Control (2003)
- hahn, Reduction of nonlinear models using balancing of empirical gramians and Galerkin projections. In Proc American Control Conference (2000)
- Fujimoto, K. & Scherpen, J. M. A. Nonlinear balanced realization based on singular value analysis of hankel operators. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) vol. 6 6072–6077 – 10.1109/cdc.2003.1272220
- Fujimoto, K. What are singular values of nonlinear operators? 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 1623-1628 Vol.2 (2004) doi:10.1109/cdc.2004.1430277 – 10.1109/cdc.2004.1430277
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26, 17–32 (1981) – 10.1109/tac.1981.1102568
- verriest, Discrete-time nonlinear balancing. In Proc 5th IFAC Symp Nonlinear Control Systems (2001)