Structure‐preserving Galerkin approximation for a class of nonlinear port‐Hamiltonian partial differential equations on networks
Authors
Björn Liljegren-Sailer, Nicole Marheineke
Abstract
The development of structure‐preserving approximation methods, which regard fundamental underlying physical principles, is an active field of research. Especially when the application of model reduction is desirable, systematic and rather generic approaches are of great interest. In this contribution we discuss a structure‐preserving Galerkin approach for a prototypical class of nonlinear partial differential equations on networks. Its derivation is guided by port‐Hamiltonian‐type modeling and appropriate variational principles. Also complexity‐reduction schemes can be integrated in a structure‐preserving way, which becomes crucial in the context of model reduction for nonlinear systems.
Citation
- Journal: PAMM
- Year: 2019
- Volume: 19
- Issue: 1
- Pages:
- Publisher: Wiley
- DOI: 10.1002/pamm.201900399
BibTeX
@article{Liljegren_Sailer_2019,
title={{Structure‐preserving Galerkin approximation for a class of nonlinear port‐Hamiltonian partial differential equations on networks}},
volume={19},
ISSN={1617-7061},
DOI={10.1002/pamm.201900399},
number={1},
journal={PAMM},
publisher={Wiley},
author={Liljegren-Sailer, Björn and Marheineke, Nicole},
year={2019}
}
References
- Brouwer, J., Gasser, I. & Herty, M. Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks. Multiscale Model. Simul. 9, 601–623 (2011) – 10.1137/100813580
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation ⁎ ⁎This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project/. IFAC-PapersOnLine 51, 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM J. Sci. Comput. 38, B837–B865 (2016) – 10.1137/15m1055085
- Egger, H. A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks. SIAM J. Sci. Comput. 40, A108–A129 (2018) – 10.1137/16m1094373
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM J. Sci. Comput. 40, A331–A365 (2018) – 10.1137/17m1125303
- Farle, O., Baltes, R.-B. & Dyczij-Edlinger, R. Strukturerhaltende Diskretisierung verteilt-parametrischer Port-Hamiltonscher Systeme mittels finiter Elemente. at - Automatisierungstechnik 62, 500–511 (2014) – 10.1515/auto-2014-1093
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics 361, 442–476 (2018) – 10.1016/j.jcp.2018.02.006