Stokes-Dirac structures through reduction of infinite-dimensional Dirac structures
Authors
Joris Vankerschaver, Hiroaki Yoshimura, Melvin Leok, Jerrold E. Marsden
Abstract
We consider the concept of Stokes-Dirac structures in boundary control theory proposed by van der Schaft and Maschke. We introduce Poisson reduction in this context and show how Stokes-Dirac structures can be derived through symmetry reduction from a canonical Dirac structure on the unreduced phase space. In this way, we recover not only the standard structure matrix of Stokes-Dirac structures, but also the typical non-canonical advection terms in (for instance) the Euler equation.
Citation
- Journal: 49th IEEE Conference on Decision and Control (CDC)
- Year: 2010
- Volume:
- Issue:
- Pages: 6265–6270
- Publisher: IEEE
- DOI: 10.1109/cdc.2010.5717698
BibTeX
@inproceedings{Vankerschaver_2010,
title={{Stokes-Dirac structures through reduction of infinite-dimensional Dirac structures}},
DOI={10.1109/cdc.2010.5717698},
booktitle={{49th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Vankerschaver, Joris and Yoshimura, Hiroaki and Leok, Melvin and Marsden, Jerrold E.},
year={2010},
pages={6265--6270}
}
References
- Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics vol. 63 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
- Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Transactions of the American Mathematical Society vol. 281 147–177 (1984) – 10.1090/s0002-9947-1984-0719663-1
- marsden, Introduction to mechanics and symmetry. ser Texts in Applied Mathematics (1994)
- Morrison, P. J. Hamiltonian description of the ideal fluid. Reviews of Modern Physics vol. 70 467–521 (1998) – 10.1103/revmodphys.70.467
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- vankerschaver, Multi-Dirac Structures and Hamilton-Pontryagin Principles for Lagrange-Dirac Field Theories. (2010)
- The Behavioral Approach to Open and Interconnected Systems. IEEE Control Systems vol. 27 46–99 (2007) – 10.1109/mcs.2007.906923
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics vol. 57 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Yoshimura, H. & Marsden, J. E. Reduction of Dirac structures and the Hamilton-Pontryagin principle. Reports on Mathematical Physics vol. 60 381–426 (2007) – 10.1016/s0034-4877(08)00004-9
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics vol. 47 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Arnold, V. I. & Khesin, B. A. Topological Methods in Hydrodynamics. Applied Mathematical Sciences (Springer New York, 1998). doi:10.1007/b97593 – 10.1007/b97593
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- bossavit, Computational electromagnetism. ser Electromagnetism (1998)
- gotay, Momentum Maps and Classical Relativistic Fields, Part II. (1999)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- arnold, Mathematical aspects of classical and celestial mechanics. (1997)
- abraham, Foundations of mechanics. The Advanced Book Program (1978)
- Holm, D. D., Marsden, J. E. & Ratiu, T. S. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories. Advances in Mathematics vol. 137 1–81 (1998) – 10.1006/aima.1998.1721