Physics-based control education: energy, dissipation, and structure assignments
Authors
Abstract
Control theory usually finds no suitable place in the education of physics. The port-Hamiltonian framework, which generalizes the formalism of Hamiltonian mechanics, provides a physics-based control strategy. This framework is also promising in the education of physicists in control theory. In this paper, we use the port-Hamiltonian framework to reformulate a physics system and introduce the physics-based control strategy, including the energy, dissipation, and structure assignments. The closed-loop Hamiltonian is a candidate of the Lyapunov function, which guarantees the global stability of the closed-loop system. These physics-based control strategies are illustrated using the Duffing oscillator and the Lorenz system. We also provide port-Hamiltonian descriptions for two examples in celestial mechanics.
Citation
- Journal: European Journal of Physics
- Year: 2019
- Volume: 40
- Issue: 3
- Pages: 035006
- Publisher: IOP Publishing
- DOI: 10.1088/1361-6404/ab03e8
BibTeX
@article{Liu_2019,
title={{Physics-based control education: energy, dissipation, and structure assignments}},
volume={40},
ISSN={1361-6404},
DOI={10.1088/1361-6404/ab03e8},
number={3},
journal={European Journal of Physics},
publisher={IOP Publishing},
author={Liu, Chang and Dong, Lu},
year={2019},
pages={035006}
}
References
- Bai, E.-W. & Lonngren, K. E. Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals vol. 11 1041–1044 (2000) – 10.1016/s0960-0779(98)00328-2
- Bechhoefer, J. Feedback for physicists: A tutorial essay on control. Reviews of Modern Physics vol. 77 783–836 (2005) – 10.1103/revmodphys.77.783
- Bhatia N P, Stability Theory of Dynamical Systems (2002)
- Borisov, A. V. & Mamaev, I. S. Strange attractors in rattleback dynamics. Physics-Uspekhi vol. 46 393–403 (2003) – 10.1070/pu2003v046n04abeh001306
- Borisov, A. V. & Mamaev, I. S. Equations of motion of non-holonomic systems. Russian Mathematical Surveys vol. 70 1167–1169 (2015) – 10.1070/rm2015v070n06abeh004976
- Borisov, A. V. & Mamaev, I. S. Symmetries and reduction in nonholonomic mechanics. Regular and Chaotic Dynamics vol. 20 553–604 (2015) – 10.1134/s1560354715050044
- Borisov, A. V., Mamaev, I. S. & Bizyaev, I. A. Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics. Russian Mathematical Surveys vol. 72 783–840 (2017) – 10.1070/rm9783
- De Queiroz M S, Lyapunov-based Control of Mechanical Systems (2012)
- Doyle J C, Feedback Control Theory (2013)
- Dutton K, The Art of Control Engineering (1997)
- Franklin G F, Digital Control of Dynamic Systems (1998)
- Goodwin G C, Control System Design (2001)
- Guckenheimer J, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (2013)
- Ho, M.-C. & Hung, Y.-C. Synchronization of two different systems by using generalized active control. Physics Letters A vol. 301 424–428 (2002) – 10.1016/s0375-9601(02)00987-8
- Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Physics Reports vol. 123 1–116 (1985) – 10.1016/0370-1573(85)90028-6
- Jia, Q. Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A vol. 366 217–222 (2007) – 10.1016/j.physleta.2007.02.024
- Joseph, D. P. & Tou, T. J. On linear control theory. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry vol. 80 193–196 (1961) – 10.1109/tai.1961.6371743
- Kozlov, V. V. Regular and Chaotic Dynamics vol. 7 161 (2002) – 10.1070/rd2002v007n02abeh000203
- Liu C, Acta Astron. Sinica (2019)
- Liu C, Physics Letters (2019)
- Liu C, (2019)
- LYAPUNOV, A. M. The general problem of the stability of motion. International Journal of Control vol. 55 531–534 (1992) – 10.1080/00207179208934253
- Morrison, P. J. Hamiltonian description of the ideal fluid. Reviews of Modern Physics vol. 70 467–521 (1998) – 10.1103/revmodphys.70.467
- Morrison, P. J. Hamiltonian Fluid Dynamics. Encyclopedia of Mathematical Physics 593–600 (2006) doi:10.1016/b0-12-512666-2/00246-7 – 10.1016/b0-12-512666-2/00246-7
- Musielak, Z. E. & Quarles, B. The three-body problem. Reports on Progress in Physics vol. 77 065901 (2014) – 10.1088/0034-4885/77/6/065901
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ozbay H, Introduction to Feedback Control Theory (1999)
- Salmon, R. Hamiltonian Fluid Mechanics. Annual Review of Fluid Mechanics vol. 20 225–256 (1988) – 10.1146/annurev.fl.20.010188.001301
- Sontag, E. D. Mathematical Control Theory. Texts in Applied Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0577-7 – 10.1007/978-1-4612-0577-7
- Thompson J M T, Nonlinear Dynamics and Chaos (2002)
- Topputo, F. & Zhang, C. Survey of Direct Transcription for Low-Thrust Space Trajectory Optimization with Applications. Abstract and Applied Analysis vol. 2014 1–15 (2014) – 10.1155/2014/851720
- van der Schaft, A. & Schumacher, H. An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences (Springer London, 2000). doi:10.1007/bfb0109998 – 10.1007/bfb0109998
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Zhang, C., Topputo, F., Bernelli-Zazzera, F. & Zhao, Y.-S. Low-Thrust Minimum-Fuel Optimization in the Circular Restricted Three-Body Problem. Journal of Guidance, Control, and Dynamics vol. 38 1501–1510 (2015) – 10.2514/1.g001080