Stability properties of some port-Hamiltonian SPDEs
Authors
Peter Kuchling, Barbara Rüdiger, Baris Ugurcan
Abstract
We examine the existence and uniqueness of invariant measures of a class of stochastic partial differential equations with Gaussian and Poissonian noise and its exponential convergence. This class especially includes a case of stochastic port-Hamiltonian equations.
Citation
- Journal: Stochastics
- Year: 2024
- Volume:
- Issue:
- Pages: 1–15
- Publisher: Informa UK Limited
- DOI: 10.1080/17442508.2024.2387773
BibTeX
@article{Kuchling_2024,
title={{Stability properties of some port-Hamiltonian SPDEs}},
ISSN={1744-2516},
DOI={10.1080/17442508.2024.2387773},
journal={Stochastics},
publisher={Informa UK Limited},
author={Kuchling, Peter and Rüdiger, Barbara and Ugurcan, Baris},
year={2024},
pages={1--15}
}
References
- Albeverio, S., Mandrekar, V. & Rüdiger, B. Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise. Stochastic Processes and their Applications vol. 119 835–863 (2009) – 10.1016/j.spa.2008.03.006
- Da Prato, G. & Zabczyk, J. Stochastic Equations in Infinite Dimensions. (2014) doi:10.1017/cbo9781107295513 – 10.1017/cbo9781107295513
- Masi, A. D., Orlandi, E., Presutti, E. & Triolo, L. Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity vol. 7 633–696 (1994) – 10.1088/0951-7715/7/3/001
- Masi, A. D., Orlandi, E., Presutti, E. & Triolo, L. Glauber evolution with Kac potentials: II. Fluctuations. Nonlinearity vol. 9 27–51 (1996) – 10.1088/0951-7715/9/1/002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Farkas, B., Friesen, M., Rüdiger, B. & Schroers, D. On a class of stochastic partial differential equations with multiple invariant measures. Nonlinear Differential Equations and Applications NoDEA vol. 28 (2021) – 10.1007/s00030-021-00691-x
- Filipović, D., Tappe, S. & Teichmann, J. Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics vol. 82 475–520 (2010) – 10.1080/17442501003624407
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Giacomin, G., Lebowitz, J. & Presutti, E. Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. Mathematical Surveys and Monographs 107–152 (1999) doi:10.1090/surv/064/03 – 10.1090/surv/064/03
- Guo, Y., Shu, X.-B. & Yin, Q. Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B vol. 27 4455 (2022) – 10.3934/dcdsb.2021236
- Yin, Q.-B., Guo, Y., Wu, D. & Shu, X.-B. Existence and Multiplicity of Mild Solutions for First-Order Hamilton Random Impulsive Differential Equations with Dirichlet Boundary Conditions. Qualitative Theory of Dynamical Systems vol. 22 (2023) – 10.1007/s12346-023-00748-5
- B. Jacob and H. Zwart Linear port-Hamiltonian systems on infinite-dimensional spaces in Operator Theory: Advances and Applications Linear Operators and Linear Systems (LOLS) Vol. 223 Birkhäuser and Springer Basel AG Basel 2012. pp. xii+217 ISBN: 978-3-0348-0398-4.
- Lamoline, F. & Winkin, J. J. Well-Posedness of Boundary Controlled and Observed Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 65 4258–4264 (2020) – 10.1109/tac.2019.2954481
- Mandrekar V.. V. Mandrekar and B. Rüdiger, Stochastic Integration in Banach Spaces: Theory and Applications, Probability Theory and Stochastic Modelling Book 73, Springer, 2014. (2014)
- Mandrekar, V. & Rüdiger, B. Stability Properties of Mild Solutions of SPDEs Related to Pseudo Differential Equations. Springer Proceedings in Mathematics & Statistics 295–313 (2023) doi:10.1007/978-3-031-14031-0_13 – 10.1007/978-3-031-14031-0_13
- Peszat, S. & Zabczyk, J. Stochastic Partial Differential Equations with Levy Noise. (2007) doi:10.1017/cbo9780511721373 – 10.1017/cbo9780511721373
- Prüss J.. J. Prüss and M. Wilke, Gewöhnliche Differentialgleichungen Und Dynamische Systeme, Birkhäuser, Basel, 2010. (2010)
- van der Schaft A.. A. van der Schaft, Port-Hamiltonian Systems: An Introductory Survey, European Mathematical Society (EMS), Zürich, 2006, pp. 1339–1365. ISBN: 978-3-03719-022-7. (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- O. van Gaans Invariant measures for stochastic evolution equations with Hilbert space valued Lévy noise preprint (2005) Available at https://www.math.leidenuniv.nl/vangaans/gaansrep1.pdf.
- Villani, C. Optimal Transport. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-540-71050-9 – 10.1007/978-3-540-71050-9