Stability properties of some port-Hamiltonian SPDEs
Authors
Peter Kuchling, Barbara Rüdiger, Baris Ugurcan
Abstract
We examine the existence and uniqueness of invariant measures of a class of stochastic partial differential equations with Gaussian and Poissonian noise and its exponential convergence. This class especially includes a case of stochastic port-Hamiltonian equations.
Citation
- Journal: Stochastics
- Year: 2025
- Volume: 97
- Issue: 8
- Pages: 977–991
- Publisher: Informa UK Limited
- DOI: 10.1080/17442508.2024.2387773
BibTeX
@article{Kuchling_2024,
title={{Stability properties of some port-Hamiltonian SPDEs}},
volume={97},
ISSN={1744-2516},
DOI={10.1080/17442508.2024.2387773},
number={8},
journal={Stochastics},
publisher={Informa UK Limited},
author={Kuchling, Peter and Rüdiger, Barbara and Ugurcan, Baris},
year={2024},
pages={977--991}
}References
- Albeverio S, Mandrekar V, Rüdiger B (2009) Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise. Stochastic Processes and their Applications 119(3):835–863. https://doi.org/10.1016/j.spa.2008.03.00 – 10.1016/j.spa.2008.03.006
- Da Prato G, Zabczyk J (2014) Stochastic Equations in Infinite Dimension – 10.1017/cbo9781107295513
- Masi AD, Orlandi E, Presutti E, Triolo L (1994) Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7(3):633–696. https://doi.org/10.1088/0951-7715/7/3/00 – 10.1088/0951-7715/7/3/001
- Masi AD, Orlandi E, Presutti E, Triolo L (1996) Glauber evolution with Kac potentials: II. Fluctuations. Nonlinearity 9(1):27–51. https://doi.org/10.1088/0951-7715/9/1/00 – 10.1088/0951-7715/9/1/002
- Duindam V, Macchelli A, Stramigioli S, Bruyninckx H (2009) Modeling and Control of Complex Physical Systems. Springer Berlin Heidelber – 10.1007/978-3-642-03196-0
- Fang Z, Gao C (2017) Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Trans Automat Contr 62(8):4159–4166. https://doi.org/10.1109/tac.2017.267661 – 10.1109/tac.2017.2676619
- Farkas B, Friesen M, Rüdiger B, Schroers D (2021) On a class of stochastic partial differential equations with multiple invariant measures. Nonlinear Differ Equ Appl 28(3). https://doi.org/10.1007/s00030-021-00691- – 10.1007/s00030-021-00691-x
- Filipović D, Tappe S, Teichmann J (2010) Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics 82(5):475–520. https://doi.org/10.1080/1744250100362440 – 10.1080/17442501003624407
- Satoh S, Fujimoto K (2013) Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Trans Automat Contr 58(5):1139–1153. https://doi.org/10.1109/tac.2012.222979 – 10.1109/tac.2012.2229791
- Giacomin G, Lebowitz J, Presutti E (1999) Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. Mathematical Surveys and Monographs 107–15 – 10.1090/surv/064/03
- Guo Y, Shu X-B, Yin Q (2022) Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. DCDS-B 27(8):4455. https://doi.org/10.3934/dcdsb.202123 – 10.3934/dcdsb.2021236
- Yin Q-B, Guo Y, Wu D, Shu X-B (2023) Existence and Multiplicity of Mild Solutions for First-Order Hamilton Random Impulsive Differential Equations with Dirichlet Boundary Conditions. Qual Theory Dyn Syst 22(2). https://doi.org/10.1007/s12346-023-00748- – 10.1007/s12346-023-00748-5
- Lamoline F, Winkin JJ (2020) Well-Posedness of Boundary Controlled and Observed Stochastic Port-Hamiltonian Systems. IEEE Trans Automat Contr 65(10):4258–4264. https://doi.org/10.1109/tac.2019.295448 – 10.1109/tac.2019.2954481
- Mandrekar V., Stochastic Integration in Banach Spaces: Theory and Applications (2014)
- Mandrekar V, Rüdiger B (2023) Stability Properties of Mild Solutions of SPDEs Related to Pseudo Differential Equations. Springer Proceedings in Mathematics & Statistics 295–31 – 10.1007/978-3-031-14031-0_13
- Peszat S, Zabczyk J (2007) Stochastic Partial Differential Equations with Levy Nois – 10.1017/cbo9780511721373
- Prüss J., Gewöhnliche Differentialgleichungen Und Dynamische Systeme (2010)
- van der Schaft A., Port-Hamiltonian Systems: An Introductory Survey (2006)
- van der Schaft A, Jeltsema D (2014) Port-Hamiltonian Systems Theory: An Introductory Overvie – 10.1561/9781601987877
- Villani C (2009) Optimal Transport. Springer Berlin Heidelber – 10.1007/978-3-540-71050-9