Authors

Vincent Duindam, Stefano Stramigioli

Abstract

This is a correction to [Duindam and Stramigioli, “Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints,” IEEE Trans. Robot., vol. 24, no. 3, pp. 527-526, Jun. 2008] where the singularity-free dynamic equations of mechanical systems with Euclidean or non-Euclidean configuration spaces are presented. We present the correct explicit expressions of the equations presented in the above referenced paper.

Citation

  • Journal: IEEE Transactions on Robotics
  • Year: 2008
  • Volume: 24
  • Issue: 3
  • Pages: 517–526
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tro.2008.924250

BibTeX

@article{Duindam_2008,
  title={{Singularity-Free Dynamic Equations of Open-Chain Mechanisms With General Holonomic and Nonholonomic Joints}},
  volume={24},
  ISSN={1552-3098},
  DOI={10.1109/tro.2008.924250},
  number={3},
  journal={IEEE Transactions on Robotics},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Duindam, Vincent and Stramigioli, Stefano},
  year={2008},
  pages={517--526}
}

Download the bib file

References

  • 20sim version 3.6. (2005)
  • Munthe-Kaas, H. Runge-Kutta methods on Lie groups. BIT Numerical Mathematics vol. 38 92–111 (1998) – 10.1007/bf02510919
  • Müller, A. Multibody System Dynamics vol. 9 311–352 (2003) – 10.1023/a:1023321630764
  • selig, Geometric Fundamentals of Robotics (2005)
  • Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
  • bullo, Geometric control of mechanical systems modeling analysis and design for simple mechanical control systems (2004)
  • Gibbs, J. W. On the Fundamental Formulae of Dynamics. American Journal of Mathematics vol. 2 49 (1879) – 10.2307/2369196
  • Lewis, A. D. The geometry of the Gibbs-Appell equations and Gauss’ principle of least constraint. Reports on Mathematical Physics vol. 38 11–28 (1996) – 10.1016/0034-4877(96)87675-0
  • Kane, T. R. & Wang, C. F. On the Derivation of Equations of Motion. Journal of the Society for Industrial and Applied Mathematics vol. 13 487–492 (1965) – 10.1137/0113030
  • A geometrical interpretation of Kane’s Equations. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences vol. 436 69–87 (1992) – 10.1098/rspa.1992.0005
  • Blajer, W. A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics. ZAMM vol. 81 247–259 (2001) – 10.1002/1521-4001(200104)81:4<247::aid-zamm247>3.0.co;2-d
  • Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. & Murray, R. M. Nonholonomic mechanical systems with symmetry. Archive for Rational Mechanics and Analysis vol. 136 21–99 (1996) – 10.1007/bf02199365
  • karnopp, System Dynamics Modeling and Simulation of Mechatronic Systems (2006)
  • whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (1998)
  • Park, J. Principle of Dynamical Balance for Multibody Systems. Multibody System Dynamics vol. 14 269–299 (2005) – 10.1007/s11044-005-1356-y
  • stramigioli, Modeling and IPC Control of Interactive Mechanical SystemsA Coordinate-Free Approach (2001)
  • Featherstone, R. & Fijany, A. A technique for analyzing constrained rigid-body systems, and its application to the constraint force algorithm. IEEE Transactions on Robotics and Automation vol. 15 1140–1144 (1999) – 10.1109/70.817679
  • McLachlan, R. I. & Quispel, G. R. W. Geometric integrators for ODEs. Journal of Physics A: Mathematical and General vol. 39 5251–5285 (2006) – 10.1088/0305-4470/39/19/s01
  • papastavridis, Analytical Mechanics A Comprehensive Treatise on the Dynamics of Constrained Systems For Engineers Physicists and Mathematicians (2002)
  • Cameron, J. M. & Book, W. J. Modeling Mechanisms with Nonholonomic Joints Using the Boltzmann-Hamel Equations. The International Journal of Robotics Research vol. 16 47–59 (1997) – 10.1177/027836499701600104
  • Aghili, F. & Piedbœuf, J.-C. Multibody System Dynamics vol. 10 3–16 (2003) – 10.1023/a:1024584323751
  • maschke, port-controlled hamiltonian systems: modelling origins and system-theoretic properties. Proc IFAC Symp Nonlinear Control Syst (1992)
  • Park, F. C., Bobrow, J. E. & Ploen, S. R. A Lie Group Formulation of Robot Dynamics. The International Journal of Robotics Research vol. 14 609–618 (1995) – 10.1177/027836499501400606
  • murray, A Mathematical Introduction to Robotic Manipulation (1994)
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Welch, S. W. J., Hong, M., Trapp, J. A. & Choi, M.-H. Parameter-Free Second Order Numerical Scheme for Constrained Multibody Dynamical Systems. Journal of Guidance, Control, and Dynamics vol. 30 1494–1503 (2007) – 10.2514/1.28708
  • duindam, port-based modeling and analysis of snakeboard locomotion. Int Symp Math Theory Netw Syst (2004)
  • smith, open dynamics engine (ode). (2006)
  • otter, the new modelica multibody library. Third Int Modelica Conf (2003)
  • Featherstone, R. Robot Dynamics Algorithms. (Springer US, 1987). doi:10.1007/978-0-387-74315-8 – 10.1007/978-0-387-74315-8
  • webots 5. (2006)