Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach
Authors
Walter Gil-González, Oscar Danilo Montoya, Carlos Restrepo, Jesus C. Hernández
Abstract
The problem of voltage regulation in unknown constant resistive loads is addressed in this paper from the nonlinear control point of view for second-order DC-DC converters. The converters’ topologies analyzed are: (i) buck converter, (ii) boost converter, (iii) buck-boost converter, and (iv) non-inverting buck-boost converter. The averaging modeling method is used to model these converters, representing all these converter topologies with a generalized port-Controlled Hamiltonian (PCH) representation. The PCH representation shows that the second-order DC-DC converters exhibit a general bilinear structure which permits to design of a passivity-based controller with PI actions that ensures the asymptotic stability in the sense of Lyapunov. A linear estimator based on an integral estimator that allows reducing the number of current sensors required in the control implementation stage is used to determine the value of the unknown resistive load. The main advantage of this load estimator is that it ensures exponential convergence to the estimated variable. Numerical simulations and experimental validations show that the PI passivity-based control allows voltage regulation with first-order behavior, while the classical PI controller produces oscillations in the controlled variable, significantly when the load varies.
Citation
- Journal: Sensors
- Year: 2021
- Volume: 21
- Issue: 19
- Pages: 6367
- Publisher: MDPI AG
- DOI: 10.3390/s21196367
BibTeX
@article{Gil_Gonz_lez_2021,
title={{Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach}},
volume={21},
ISSN={1424-8220},
DOI={10.3390/s21196367},
number={19},
journal={Sensors},
publisher={MDPI AG},
author={Gil-González, Walter and Montoya, Oscar Danilo and Restrepo, Carlos and Hernández, Jesus C.},
year={2021},
pages={6367}
}
References
- Advances in Energy Systems. (2019) doi:10.1002/9781119508311 – 10.1002/9781119508311
- Gavriluta, C., Candela, I., Citro, C., Luna, A. & Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electric Power Systems Research 122, 33–41 (2015) – 10.1016/j.epsr.2014.12.020
- Montoya, O. D., Gil-González, W. & Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. International Journal of Electrical Power & Energy Systems 123, 106299 (2020) – 10.1016/j.ijepes.2020.106299
- Montoya, O. D., Serra, F. M. & De Angelo, C. H. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 9, 1352 (2020) – 10.3390/electronics9091352
- Srinivasan, M. & Kwasinski, A. Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads. International Journal of Electrical Power & Energy Systems 122, 106207 (2020) – 10.1016/j.ijepes.2020.106207
- Jin, C., Wang, P., Xiao, J., Tang, Y. & Choo, F. H. Implementation of Hierarchical Control in DC Microgrids. IEEE Trans. Ind. Electron. 61, 4032–4042 (2014) – 10.1109/tie.2013.2286563
- Gil-González, W., Montoya, O. D. & Espinosa-Perez, G. Adaptive control for second-order DC–DC converters: PBC approach. Modeling, Operation, and Analysis of DC Grids 289–310 (2021) doi:10.1016/b978-0-12-822101-3.00016-2 – 10.1016/b978-0-12-822101-3.00016-2
- Singh, B. & Shrivastava, A. Buck converter‐based power supply design for low power light emitting diode lamp lighting. IET Power Electronics 7, 946–956 (2014) – 10.1049/iet-pel.2013.0391
- Sliding-mode-control-based boost converter for high-voltage–low-power applications. IEEE Trans. Ind. Electron. (2014)
- Chen, X., Pise, A. A., Elmes, J. & Batarseh, I. Ultra-Highly Efficient Low-Power Bidirectional Cascaded Buck-Boost Converter for Portable PV-Battery-Devices Applications. IEEE Trans. on Ind. Applicat. 55, 3989–4000 (2019) – 10.1109/tia.2019.2911566
- Serna-Garcés, S., González Montoya, D. & Ramos-Paja, C. Control of a Charger/Discharger DC/DC Converter with Improved Disturbance Rejection for Bus Regulation. Energies 11, 594 (2018) – 10.3390/en11030594
- Serna-Garcés, S., Gonzalez Montoya, D. & Ramos-Paja, C. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems. Energies 9, 245 (2016) – 10.3390/en9040245
- Lin, X. et al. Fractional-Order Sliding Mode Approach of Buck Converters With Mismatched Disturbances. IEEE Trans. Circuits Syst. I 68, 3890–3900 (2021) – 10.1109/tcsi.2021.3092138
- Liu, J. et al. Sliding Mode Control of Grid-Connected Neutral-Point-Clamped Converters Via High-Gain Observer. IEEE Trans. Ind. Electron. 69, 4010–4021 (2022) – 10.1109/tie.2021.3070496
- Liu, J., Laghrouche, S. & Wack, M. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. International Journal of Control 87, 1117–1130 (2014) – 10.1080/00207179.2013.868609
- Yin, Y. et al. Backstepping Control of a DC-DC Boost Converters Under Unknown Disturbances. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society 1055–1060 (2018) doi:10.1109/iecon.2018.8591649 – 10.1109/iecon.2018.8591649
- Roy, T. K., Mahmud, M. A., Shen, W., Haque, M. E. & Oo, A. M. T. Robust adaptive backstepping controller design for DC-DC buck converters with external disturbances. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) 1218–1223 (2016) doi:10.1109/iciea.2016.7603770 – 10.1109/iciea.2016.7603770
- Bhattacharyya, D., Padhee, S. & Pati, K. C. Modeling of DC–DC Converter Using Exact Feedback Linearization Method: A Discussion. IETE Journal of Research 65, 843–854 (2018) – 10.1080/03772063.2018.1454345
- Cai, P., Wu, X., Sun, R. & Wu, Y. Exact feedback linearization of general four-level buck DC-DC converters. 2017 29th Chinese Control And Decision Conference (CCDC) 4638–4643 (2017) doi:10.1109/ccdc.2017.7979316 – 10.1109/ccdc.2017.7979316
- Yin, Y. et al. Advanced Control Strategies for DC–DC Buck Converters With Parametric Uncertainties via Experimental Evaluation. IEEE Trans. Circuits Syst. I 67, 5257–5267 (2020) – 10.1109/tcsi.2020.3009168
- Montoya, O., Gil-Gonzalez, W., Garces, A., Serra, F. & Hernandez, J. C. PI-PBC Approach for Voltage Regulation in Ćuk Converters with Adaptive Load Estimation. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) 1–5 (2020) doi:10.1109/ropec50909.2020.9258716 – 10.1109/ropec50909.2020.9258716
- Ramirez, H., Garzón, G., Torres, C., Navarrete, J. & Restrepo, C. LMI Control Design of a Non-Inverting Buck-Boost Converter: a Current Regulation Approach. TECCIENCIA 12, 79–85 (2017) – 10.18180/tecciencia.2017.22.9
- Magaldi, G. L., Serra, F. M., de Angelo, C. H., Montoya, O. D. & Giral-Ramírez, D. A. Voltage Regulation of an Isolated DC Microgrid with a Constant Power Load: A Passivity-based Control Design. Electronics 10, 2085 (2021) – 10.3390/electronics10172085
- Rodighiero, F. & Freato, S. Design and implementation of low-loss non-inverting buck-boost for lithium-ion batteries charging applications. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) P.1-P.10 (2017) doi:10.23919/epe17ecceeurope.2017.8099067 – 10.23919/epe17ecceeurope.2017.8099067
- Kolsi, S., Samet, H. & Amar, M. B. Design Analysis of DC-DC Converters Connected to a Photovoltaic Generator and Controlled by MPPT for Optimal Energy Transfer throughout a Clear Day. JPEE 02, 27–34 (2014) – 10.4236/jpee.2014.21004
- Radhika, S. & Margaret, V. A Review on DC-DC Converters with Photovoltaic System in DC Micro Grid. J. Phys.: Conf. Ser. 1804, 012155 (2021) – 10.1088/1742-6596/1804/1/012155
- Mazhari, I. & Parkhideh, B. DC-bus voltage regulation for DC distribution system with controllable DC load. 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) 1–6 (2017) doi:10.1109/pedg.2017.7972501 – 10.1109/pedg.2017.7972501
- Aryani, D. R. & Song, H. Voltage Regulation in a Stand-Alone DC Microgrid. IFAC-PapersOnLine 52, 36–39 (2019) – 10.1016/j.ifacol.2019.08.151
- Ortega, R., Jiang, Z. P. & Hill, D. J. Passivity-based control of nonlinear systems: a tutorial. Proceedings of the 1997 American Control Conference (Cat. No.97CH36041) 2633–2637 vol.5 (1997) doi:10.1109/acc.1997.611933 – 10.1109/acc.1997.611933
- Chen, W. & Saif, M. PASSIVITY AND PASSIVITY BASED CONTROLLER DESIGN OF A CLASS OF SWITCHED CONTROL SYSTEMS. IFAC Proceedings Volumes 38, 676–681 (2005) – 10.3182/20050703-6-cz-1902.00768
- Serra, F. M. & De Angelo, C. H. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electric Power Systems Research 142, 12–19 (2017) – 10.1016/j.epsr.2016.08.041
- Serra, F. M., De Angelo, C. H. & Forchetti, D. G. Interconnection and damping assignment control of a three-phase front end converter. International Journal of Electrical Power & Energy Systems 60, 317–324 (2014) – 10.1016/j.ijepes.2014.03.033
- Cisneros, R. et al. Global tracking passivity-based PI control for power converters: An application to the boost and modular multilevel converters. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE) 1359–1365 (2014) doi:10.1109/isie.2014.6864812 – 10.1109/isie.2014.6864812
- Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 18, 688–698 (2010) – 10.1109/tcst.2009.2023669
- Yazici, İ. Simple and robust voltage controller for buck converters based on the coefficient ratio method. Int Trans Electr Energ Syst 30, (2020) – 10.1002/2050-7038.12409
- Bingqing, Load-current sensorless sliding-predictive control strategies for Boost converters. J. Tsinghua Univ. Technol. (2019)
- Montoya, O. D., Villa, J. L. & Gil-Gonzale, W. PBC Design for Voltage Regulation in Buck Converters with Parametric Uncertainties. 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC) 1–6 (2019) doi:10.1109/ccac.2019.8921015 – 10.1109/ccac.2019.8921015
- Astolfi, A., Karagiannis, D. & Ortega, R. Nonlinear and Adaptive Control with Applications. Communications and Control Engineering (Springer London, 2008). doi:10.1007/978-1-84800-066-7 – 10.1007/978-1-84800-066-7