PBC Design for Voltage Regulation in Buck Converters with Parametric Uncertainties
Authors
Oscar Danilo Montoya, J. L. Villa, Walter Gil-Gonzale
Abstract
This paper addresses the problem of voltage output regulation in DC Buck converters from the passivity-based control (PBC) point of view. The PBC takes advantage of the natural port-Hamiltonian representation of dynamic equations of the buck converter, to design a feedback controller with proportionalintegral gains, that allows to guarantee stability conditions in the sense of Lyapunov for closed-loop operation. The design of the controller is based on the incremental dynamic model of the buck converter. The PBC approach considers unknown resistive loads in the controller design without degrading the dynamic performance of the controller. In addition, the proposed approach allows to design a controller regardless the buck parameters (capacitance and inductance) which makes it robust to parametric uncertainties. Sliding planes and classical PI control methods are used for comparing the proposed PBC method. All simulations have been performed in MATLAB software by using SymPowerSystems library.
Citation
- Journal: 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)
- Year: 2019
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/ccac.2019.8921015
BibTeX
@inproceedings{Montoya_2019,
title={{PBC Design for Voltage Regulation in Buck Converters with Parametric Uncertainties}},
DOI={10.1109/ccac.2019.8921015},
booktitle={{2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)}},
publisher={IEEE},
author={Montoya, Oscar Danilo and Villa, J. L. and Gil-Gonzale, Walter},
year={2019},
pages={1--6}
}
References
- Cavanini, L., Cimini, G., Ippoliti, G. & Bemporad, A. Model predictive control for pre‐compensated voltage mode controlled DC–DC converters. IET Control Theory & Applications vol. 11 2514–2520 (2017) – 10.1049/iet-cta.2016.1501
- Ling, R., Maksimovic, D. & Leyva, R. Second-Order Sliding-Mode Controlled Synchronous Buck DC–DC Converter. IEEE Transactions on Power Electronics vol. 31 2539–2549 (2016) – 10.1109/tpel.2015.2431193
- Ma, L., Zhang, Y., Yang, X., Ding, S. & Dong, L. Quasi-Continuous Second-Order Sliding Mode Control of Buck Converter. IEEE Access vol. 6 17859–17867 (2018) – 10.1109/access.2018.2795027
- Solsona, J., Gomez Jorge, S. & Busada, C. Nonlinear Control of a Buck Converter feeding a Constant Power Load. IEEE Latin America Transactions vol. 12 899–903 (2014) – 10.1109/tla.2014.6872903
- Alvarez-Ramirez, J., Cervantes, I., Espinosa-Perez, G., Maya, P. & Morales, A. A stable design of PI control for DC-DC converters with an RHS zero. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 48 103–106 (2001) – 10.1109/81.903192
- Tsai, C.-H., Chen, B.-M. & Li, H.-L. Switching Frequency Stabilization Techniques for Adaptive On-Time Controlled Buck Converter With Adaptive Voltage Positioning Mechanism. IEEE Transactions on Power Electronics vol. 31 443–451 (2016) – 10.1109/tpel.2015.2405339
- Liping Guo, Hung, J. Y. & Nelms, R. M. Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters. IEEE Transactions on Industrial Electronics vol. 56 2237–2248 (2009) – 10.1109/tie.2009.2016955
- Cisneros, R. et al. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice vol. 43 109–119 (2015) – 10.1016/j.conengprac.2015.07.002
- Wang, J., Zhang, C., Li, S., Yang, J. & Li, Q. Finite-Time Output Feedback Control for PWM-Based DC–DC Buck Power Converters of Current Sensorless Mode. IEEE Transactions on Control Systems Technology vol. 25 1359–1371 (2017) – 10.1109/tcst.2016.2613966
- Cisneros, R., Mancilla-David, F. & Ortega, R. Passivity-Based Control of a Grid-Connected Small-Scale Windmill With Limited Control Authority. IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 1 247–259 (2013) – 10.1109/jestpe.2013.2285376
- ortega-velázquez, Current Control Mode in PV Systems Integrated with DC-DC Converters for MPPT: An IDA-PBC Approach. 2018 IEEE Green Technologies Conference (GreenTech) (2018)
- Di Piazza, M. C., Pucci, M., Ragusa, A. & Vitale, G. Analytical Versus Neural Real-Time Simulation of a Photovoltaic Generator Based on a DC–DC Converter. IEEE Transactions on Industry Applications vol. 46 2501–2510 (2010) – 10.1109/tia.2010.2072975
- Mazumder, S. K., Tahir, M. & Acharya, K. Master–Slave Current-Sharing Control of a Parallel DC–DC Converter System Over an RF Communication Interface. IEEE Transactions on Industrial Electronics vol. 55 59–66 (2008) – 10.1109/tie.2007.896138
- Montoya Giraldo, O. D., Garcés Ruiz, A., Ortega Velázquez, I. & Espinosa Pérez, G. R. Passivity-Based Control for Battery Charging/Discharging Applications by Using a Buck-Boost DC-DC Converter. 2018 IEEE Green Technologies Conference (GreenTech) 89–94 (2018) doi:10.1109/greentech.2018.00025 – 10.1109/greentech.2018.00025
- He, P. & Khaligh, A. Comprehensive Analyses and Comparison of 1 kW Isolated DC–DC Converters for Bidirectional EV Charging Systems. IEEE Transactions on Transportation Electrification vol. 3 147–156 (2017) – 10.1109/tte.2016.2630927
- Kim, S.-Y. et al. Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications. IEEE Transactions on Power Electronics vol. 33 1428–1439 (2018) – 10.1109/tpel.2017.2688387
- Reshma Gopi, R. & Sreejith, S. Converter topologies in photovoltaic applications – A review. Renewable and Sustainable Energy Reviews vol. 94 1–14 (2018) – 10.1016/j.rser.2018.05.047
- Parhizi, S., Lotfi, H., Khodaei, A. & Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access vol. 3 890–925 (2015) – 10.1109/access.2015.2443119
- Shang, F., Niu, G. & Krishnamurthy, M. Design and Analysis of a High-Voltage-Gain Step-Up Resonant DC–DC Converter for Transportation Applications. IEEE Transactions on Transportation Electrification vol. 3 157–167 (2017) – 10.1109/tte.2017.2656145
- khalil, Nonlinear Systems (2013)
- Attia, A.-F., El Sehiemy, R. A. & Hasanien, H. M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems vol. 99 331–343 (2018) – 10.1016/j.ijepes.2018.01.024