Authors

Walter Gil-González, Oscar Danilo Montoya, Gerardo Espinosa-Perez

Abstract

This chapter deals with the design of a passivity-based controller for DC–DC converters by using a general representation for second-order converters, that is, buck, boost, buck-boost, and noninverting buck-boost converters. The main idea is to propose a dynamic structure for representing these converters by introducing some constants that allow compressing them into a unique representation. The general model obtained for these converters is a bilinear port-controlled Hamiltonian (PCH) representation, whose control input is multiplied by some state variables. This PCH structure allows designing a general proportional–integral controller with passive output that ensures the asymptotic stability for closed-loop operation in the Lyapunov sense. Numerical results demonstrate that the general proposed control scheme allows regulating the voltage output of all the converters with minimum errors and adequate responses during step changes in the reference signal.

Keywords

dc–dc converters modeling, general representation for second-order dc–dc converters, port-controlled hamiltonian, proportional–integral passivity-based control, second-order dc–dc converters

Citation

BibTeX

@inbook{Gil_Gonz_lez_2021,
  title={{Adaptive control for second-order DC–DC converters: PBC approach}},
  ISBN={9780128221013},
  DOI={10.1016/b978-0-12-822101-3.00016-2},
  booktitle={{Modeling, Operation, and Analysis of DC Grids}},
  publisher={Elsevier},
  author={Gil-González, Walter and Montoya, Oscar Danilo and Espinosa-Perez, Gerardo},
  year={2021},
  pages={289--310}
}

Download the bib file

References

  • Lund, (2019)
  • Patterson, B. T. DC, Come Home: DC Microgrids and the Birth of the ‘Enernet’. IEEE Power and Energy Mag. 10, 60–69 (2012) – 10.1109/mpe.2012.2212610
  • Zia, M. F., Elbouchikhi, E. & Benbouzid, M. Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations. Applied Energy 237, 695–707 (2019) – 10.1016/j.apenergy.2019.01.040
  • Ayad, M. Y. et al. Passivity-Based Control applied to DC hybrid power source using fuel cell and supercapacitors. Energy Conversion and Management 51, 1468–1475 (2010) – 10.1016/j.enconman.2010.01.023
  • Yang, B. et al. Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach. Energy 191, 116510 (2020) – 10.1016/j.energy.2019.116510
  • Gil-González, Current PI control for PV systems in DC microgrids: a PBC design. (2019)
  • Jovcic, D. & Zhang, L. LCL DC/DC Converter for DC Grids. IEEE Trans. Power Delivery 28, 2071–2079 (2013) – 10.1109/tpwrd.2013.2272834
  • Jin, C., Wang, P., Xiao, J., Tang, Y. & Choo, F. H. Implementation of Hierarchical Control in DC Microgrids. IEEE Trans. Ind. Electron. 61, 4032–4042 (2014) – 10.1109/tie.2013.2286563
  • Dragičević, DC microgrids Part I: a review of control strategies and stabilization techniques. IEEE Transactions on Power Electronics (2015)
  • Garcés, Convex optimization for the optimal power flow on DC distribution systems. (2020)
  • Montoya, Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter. (2018)
  • Valencia, P. & Ramos-Paja, C. Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems. Energies 8, 12363–12387 (2015) – 10.3390/en81112318
  • Kim, S.-K. Passivity-Based Robust Output Voltage Tracking Control of DC/DC Boost Converter for Wind Power Systems. Energies 11, 1469 (2018) – 10.3390/en11061469
  • Gil-González, Output voltage regulation for DC DC buck converters: a passivity-based PI design. (2019)
  • Montoya, PBC approach applied on a DC–DC step-down converter for providing service to CPLs. (2019)
  • Montoya, PBC design for voltage regulation in buck converters with parametric uncertainties. (2019)
  • Chen, Z., Hu, J. & Gao, W. Closed-loop analysis and control of a non-inverting buck–boost converter. International Journal of Control 83, 2294–2307 (2010) – 10.1080/00207179.2010.520030
  • SIRA-RAMIREZ, H. Design of P-I controllers for DC-to-DC power supplies via extended linearization. International Journal of Control 51, 601–620 (1990) – 10.1080/00207179008934087
  • Sundareswaran, K., Devi, V., Nadeem, S. K., Sreedevi, V. T. & Palani, S. Buck-boost converter feedback controller design via evolutionary search. International Journal of Electronics 97, 1317–1327 (2010) – 10.1080/00207217.2010.488904
  • Şahin, M. E. & Okumuş, H. İ. Comparison of Different Controllers and Stability Analysis for Photovoltaic Powered Buck-Boost DC-DC Converter. Electric Power Components and Systems 46, 149–161 (2018) – 10.1080/15325008.2018.1436617
  • Kurokawa, A new control method for DC–DC converter by neural network predictor with repetitive training. (2011)
  • Soriano-Sánchez, A. G., Rodríguez-Licea, M. A., Pérez-Pinal, F. J. & Vázquez-López, J. A. Fractional-Order Approximation and Synthesis of a PID Controller for a Buck Converter. Energies 13, 629 (2020) – 10.3390/en13030629
  • Montoya, O. D., Gil-González, W. & Garces, A. Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches. International Journal of Electrical Power & Energy Systems 112, 221–231 (2019) – 10.1016/j.ijepes.2019.04.046
  • Sira-Ramirez, (2006)
  • Ortega, (2013)
  • Van der Schaft, (2017)
  • Cisneros, R. et al. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice 43, 109–119 (2015) – 10.1016/j.conengprac.2015.07.002
  • Linares Flores, J., Barahona Avalos, J. L. & Bautista Espinosa, C. A. Passivity-Based Controller and Online Algebraic Estimation of the Load Parameter of the DC-to-DC power converter Cuk Type. IEEE Latin Am. Trans. 9, 784–791 (2011) – 10.1109/tla.2011.5876420
  • Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 18, 688–698 (2010) – 10.1109/tcst.2009.2023669
  • Astolfi, (2007)