Robust stabilization of LTI negative imaginary systems using the nearest negative imaginary controller
Authors
Mohamed Mabrok, Mahmoud Abdelrahim
Abstract
This paper considers the problem of robust stabilization of linear time‐invariant systems with respect to unmodelled dynamics and structure uncertainties. To that end, a methodology to find the nearest negative imaginary system for a given non‐negative imaginary system is presented first. Then, this result is employed to construct a near optimal linear quadratic Gaussian controller achieving desired performance measures. The problem is formulated using port‐Hamiltonian method and the required conditions are defined in terms of linear matrix inequalities. The technique is presented using the fast gradient method to solve the problem systematically. The designed controller satisfies a negative imaginary property and guarantees a robust feedback loop. The effectiveness of the approach is demonstrated by a simulation on a numerical example.
Citation
- Journal: IET Control Theory & Applications
- Year: 2024
- Volume: 18
- Issue: 4
- Pages: 399–407
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/cth2.12578
BibTeX
@article{Mabrok_2023,
title={{Robust stabilization of LTI negative imaginary systems using the nearest negative imaginary controller}},
volume={18},
ISSN={1751-8652},
DOI={10.1049/cth2.12578},
number={4},
journal={IET Control Theory & Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Mabrok, Mohamed and Abdelrahim, Mahmoud},
year={2023},
pages={399--407}
}
References
- Harigae, M., Yamaguchi, I., Kasai, T., Igawa, H. & Suzuki, T. Control of large space structures using GPS—modal parameter identification and attitude and deformation estimation. Electronics and Communications in Japan (Part I: Communications) vol. 86 63–71 (2002) – 10.1002/ecja.10045
- Tran, V. P., Garratt, M. & Petersen, I. R. Formation control of multi-UAVs using negative-imaginary systems theory. 2017 11th Asian Control Conference (ASCC) 2031–2036 (2017) doi:10.1109/ascc.2017.8287487 – 10.1109/ascc.2017.8287487
- Chang, Y.-C. & Yen, H.-M. Design of a robust position feedback tracking controller for flexible-joint robots. IET Control Theory & Applications vol. 5 351–363 (2011) – 10.1049/iet-cta.2010.0166
- Wilson, D. G., Robinett, III, R. D., Parker, G. G. & Starr, G. P. Journal of Intelligent and Robotic Systems vol. 34 415–430 (2002) – 10.1023/a:1019635709331
- Bhikkaji, B. & Moheimani, S. O. R. Fast scanning using piezoelectric tube nanopositioners: A negative imaginary approach. 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 274–279 (2009) doi:10.1109/aim.2009.5230001 – 10.1109/aim.2009.5230001
- Mahmood I.A., A new scanning method for fast atomic force microscopy, IEEE Trans. Nanotechnol. (2011)
- Devasia, S., Eleftheriou, E. & Moheimani, S. O. R. A Survey of Control Issues in Nanopositioning. IEEE Transactions on Control Systems Technology vol. 15 802–823 (2007) – 10.1109/tcst.2007.903345
- Díaz, I. M., Pereira, E. & Reynolds, P. Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures. Structural Control and Health Monitoring vol. 19 55–69 (2010) – 10.1002/stc.423
- Preumont, A. Vibration Control of Active Structures. Solid Mechanics and Its Applications (Springer Netherlands, 2011). doi:10.1007/978-94-007-2033-6 – 10.1007/978-94-007-2033-6
- Fanson, J. L. & Caughey, T. K. Positive position feedback control for large space structures. AIAA Journal vol. 28 717–724 (1990) – 10.2514/3.10451
- Feedback Control of Negative-Imaginary Systems. IEEE Control Systems vol. 30 54–72 (2010) – 10.1109/mcs.2010.937676
- Morris K., Control of Flexible Structures (1993)
- Ray, W. H. Some recent applications of distributed parameter systems theory—A survey. Automatica vol. 14 281–287 (1978) – 10.1016/0005-1098(78)90092-4
- Lanzon, A. & Petersen, I. R. Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response. IEEE Transactions on Automatic Control vol. 53 1042–1046 (2008) – 10.1109/tac.2008.919567
- Mabrok, M. A., Kallapur, A. G., Petersen, I. R. & Lanzon, A. Stabilization of uncertain negative-imaginary systems using a Riccati equation approach. 2012 First International Conference on Innovative Engineering Systems 255–259 (2012) doi:10.1109/icies.2012.6530879 – 10.1109/icies.2012.6530879
- Mabrok, M. A., Kallapur, A. G., Petersen, I. R. & Lanzon, A. Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures With Free Body Motion. IEEE Transactions on Automatic Control vol. 59 2692–2707 (2014) – 10.1109/tac.2014.2325692
- Ferrante, A., Lanzon, A. & Ntogramatzidis, L. Discrete-time negative imaginary systems. Automatica vol. 79 1–10 (2017) – 10.1016/j.automatica.2017.01.001
- Liu, M. & Xiong, J. Properties and stability analysis of discrete-time negative imaginary systems. Automatica vol. 83 58–64 (2017) – 10.1016/j.automatica.2017.05.006
- Mabrok, M. A., Efatmaneshnik, M. & Ryan, M. Including non-functional requirements in the Axiomatic Design process. 2015 Annual IEEE Systems Conference (SysCon) Proceedings 54–60 (2015) doi:10.1109/syscon.2015.7116729 – 10.1109/syscon.2015.7116729
- Mabrok, M., Kallapur, A. G., Petersen, I. R. & Lanzon, A. Spectral Conditions for the Negative Imaginary Property of Transfer Function Matrices. IFAC Proceedings Volumes vol. 44 1302–1306 (2011) – 10.3182/20110828-6-it-1002.00714
- Mabrok M., System identification algorithm for negative imaginary systems. Int. J. Appl. Comput. Math. (2015)
- Mabrok, M. A. Controller synthesis for negative imaginary systems using nonlinear optimisation and H2 performance measure. International Journal of Control vol. 94 579–587 (2019) – 10.1080/00207179.2019.1601773
- Engelken, S., Patra, S., Lanzon, A. & Petersen, I. R. Stability analysis of negative imaginary systems with real parametric uncertainty – the single-input single-output case. IET Control Theory & Applications vol. 4 2631–2638 (2010) – 10.1049/iet-cta.2009.0429
- Mabrok, M. A. & Petersen, I. R. Controller synthesis for negative imaginary systems: a data driven approach. IET Control Theory & Applications vol. 10 1480–1486 (2016) – 10.1049/iet-cta.2015.0800
- Petersen, I. R., Lanzon, A. & Song, Z. Stabilization of uncertain negative-imaginary systems via state-feedback control. 2009 European Control Conference (ECC) 1605–1609 (2009) doi:10.23919/ecc.2009.7074636 – 10.23919/ecc.2009.7074636
- Xiong, J., Lam, J. & Petersen, I. R. Output feedback negative imaginary synthesis under structural constraints. Automatica vol. 71 222–228 (2016) – 10.1016/j.automatica.2016.04.046
- Gillis, N. & Sharma, P. Finding the Nearest Positive-Real System. SIAM Journal on Numerical Analysis vol. 56 1022–1047 (2018) – 10.1137/17m1137176
- Fazzi, A., Guglielmi, N. & Lubich, C. Finding the Nearest Passive or Nonpassive System via Hamiltonian Eigenvalue Optimization. SIAM Journal on Matrix Analysis and Applications vol. 42 1553–1580 (2021) – 10.1137/20m1376972
- Wang, Y., Zhang, Z., Koh, C.-K., Pang, G. K. H. & Wong, N. PEDS: Passivity enforcement for descriptor systems via Hamiltonian-symplectic matrix pencil perturbation. 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 800–807 (2010) doi:10.1109/iccad.2010.5653885 – 10.1109/iccad.2010.5653885
- Forbes, J. R. & Damaren, C. J. Overcoming passivity violations: closed‐loop stability, controller design and controller scheduling. IET Control Theory & Applications vol. 7 785–795 (2013) – 10.1049/iet-cta.2012.0459
- Brull, T. & Schroder, C. Dissipativity Enforcement via Perturbation of Para-Hermitian Pencils. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 60 164–177 (2013) – 10.1109/tcsi.2012.2215731
- Mabrok, M. A., Lanzon, A., Kallapur, A. G. & Petersen, I. R. Enforcing negative imaginary dynamics on mathematical system models. International Journal of Control vol. 86 1292–1303 (2013) – 10.1080/00207179.2013.804951
- Xiong, J., Petersen, I. R. & Lanzon, A. A Negative Imaginary Lemma and the Stability of Interconnections of Linear Negative Imaginary Systems. IEEE Transactions on Automatic Control vol. 55 2342–2347 (2010) – 10.1109/tac.2010.2052711
- van der Schaft, A. J. Positive feedback interconnection of Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6510–6515 (2011) doi:10.1109/cdc.2011.6160395 – 10.1109/cdc.2011.6160395
- van der Schaft, A. Interconnections of input-output Hamiltonian systems with dissipation. 2016 IEEE 55th Conference on Decision and Control (CDC) 4686–4691 (2016) doi:10.1109/cdc.2016.7798983 – 10.1109/cdc.2016.7798983
- Gillis, N. & Sharma, P. On computing the distance to stability for matrices using linear dissipative Hamiltonian systems. Automatica vol. 85 113–121 (2017) – 10.1016/j.automatica.2017.07.047
- Nesterov Y., A method of solving a convex programming problem with convergence rate o(1/k2). Soviet Math. Dokl. (1983)