Riemannian Optimal Control and Model Matching of Linear Port-Hamiltonian Systems
Authors
Abstract
This paper presents a unified controller design method for \( H^2 \) optimal control and model matching problems of linear port-Hamiltonian systems. The controller design problems are formulated as optimization problems on the product manifold of the set of skew symmetric matrices, the manifold of the symmetric positive definite matrices, and Euclidean space. A Riemannian metric is chosen for the manifold in such a manner that the manifold is geodesically complete, i.e., the domain of the exponential map is the whole tangent space for every point on the manifold. In order to solve these problems, the Riemannian gradients of the objective functions are derived, and these gradients are used to develop a Riemannian steepest descent method on the product manifold. The geodesic completeness of the manifold guarantees that all points generated by the steepest descent method are on the manifold. Numerical experiments illustrate that our method is able to solve the two specified problems.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2017
- Volume: 62
- Issue: 12
- Pages: 6575–6581
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2017.2712905
BibTeX
@article{Sato_2017,
title={{Riemannian Optimal Control and Model Matching of Linear Port-Hamiltonian Systems}},
volume={62},
ISSN={1558-2523},
DOI={10.1109/tac.2017.2712905},
number={12},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Sato, Kazuhiro},
year={2017},
pages={6575--6581}
}
References
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters vol. 45 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- Campos-Delgado, D. U. & Zhou, K. H/sub ∞/ strong stabilization. IEEE Transactions on Automatic Control vol. 46 1968–1972 (2001) – 10.1109/9.975502
- Youla, D. C., Bongiorno, J. J., Jr. & Lu, C. N. Single-loop feedback-stabilization of linear multivariable dynamical plants. Automatica vol. 10 159–173 (1974) – 10.1016/0005-1098(74)90021-1
- Pennec, X., Fillard, P. & Ayache, N. A Riemannian Framework for Tensor Computing. International Journal of Computer Vision vol. 66 41–66 (2006) – 10.1007/s11263-005-3222-z
- sato, Structure preserving $H^2$ optimal model reduction based on Riemannian trust-region method. IEEE Trans Autom Control (0)
- absil, Optimization Algorithms on Matrix Manifolds (2009)
- boumal, Manopt, a matlab toolbox for optimization on manifolds.. J Mach Learn Res (2014)
- Koopman, J., Jeltsema, D. & Verhaegen, M. Port-Hamiltonian description and analysis of the LuGre friction model. Simulation Modelling Practice and Theory vol. 19 959–968 (2011) – 10.1016/j.simpat.2010.11.008
- kotyczka, Discretized models for networks of distributed parameter port-hamiltonian systems. Proceedings of the 8th International Workshop on Multidimensional Systems (2013)
- van der Schaft, A. J. & Polyuga, R. V. Structure-preserving model reduction of complex physical systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 4322–4327 (2009) doi:10.1109/cdc.2009.5399669 – 10.1109/cdc.2009.5399669
- Harkort, C. & Deutscher, J. Stability and passivity preserving Petrov–Galerkin approximation of linear infinite-dimensional systems. Automatica vol. 48 1347–1352 (2012) – 10.1016/j.automatica.2012.04.010
- villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems (2007)
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der schaft, L2-Gain and Passivity Techniques in Nonlinear Control (2012)
- Dullerud, G. E. & Paganini, F. A Course in Robust Control Theory. Texts in Applied Mathematics (Springer New York, 2000). doi:10.1007/978-1-4757-3290-0 – 10.1007/978-1-4757-3290-0