Port-Hamiltonian description and analysis of the LuGre friction model
Authors
Johan Koopman, Dimitri Jeltsema, Michel Verhaegen
Abstract
A port-Hamiltonian formulation of the LuGre friction model is presented that can be used as a building block in the physical modelling of systems with friction. Based on the dissipation structure matrix of this port-Hamiltonian LuGre model, an alternative proof can be given for the passivity conditions that are known in the literature. As a specific example, the interconnection of a mass with the port-Hamiltonian LuGre model is presented. It is shown that the lossless-interconnection structure and dissipation structure of the port-Hamiltonian LuGre model are consistent with those of this interconnection. As an additional example, the port-Hamiltonian formulation of a quarter-car system with a LuGre-based tyre model is presented.
Keywords
Friction; Modelling; Nonlinear systems; Port-Hamiltonian systems
Citation
- Journal: Simulation Modelling Practice and Theory
- Year: 2011
- Volume: 19
- Issue: 3
- Pages: 959–968
- Publisher: Elsevier BV
- DOI: 10.1016/j.simpat.2010.11.008
BibTeX
@article{Koopman_2011,
title={{Port-Hamiltonian description and analysis of the LuGre friction model}},
volume={19},
ISSN={1569-190X},
DOI={10.1016/j.simpat.2010.11.008},
number={3},
journal={Simulation Modelling Practice and Theory},
publisher={Elsevier BV},
author={Koopman, Johan and Jeltsema, Dimitri and Verhaegen, Michel},
year={2011},
pages={959--968}
}
References
- Armstrong-Hélouvry, B., Dupont, P. & De Wit, C. C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica vol. 30 1083–1138 (1994) – 10.1016/0005-1098(94)90209-7
- Barahanov, N. & Ortega, R. Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Transactions on Automatic Control vol. 45 830–832 (2000) – 10.1109/9.847131
- Li Chun Bo & Pavelescu, D. The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear vol. 82 277–289 (1982) – 10.1016/0043-1648(82)90223-x
- de Wit, C. C. & Lischinsky, P. Adaptive friction compensation with partially known dynamic friction model. International Journal of Adaptive Control and Signal Processing vol. 11 65–80 (1997) – 10.1002/(sici)1099-1115(199702)11:1<65::aid-acs395>3.0.co;2-3
- Canudas de Wit, C., Olsson, H., Astrom, K. J. & Lischinsky, P. A new model for control of systems with friction. IEEE Transactions on Automatic Control vol. 40 419–425 (1995) – 10.1109/9.376053
- Canudas-de-Wit, C., Tsiotras, P., Velenis, E., Basset, M. & Gissinger, G. Dynamic Friction Models for Road/Tire Longitudinal Interaction. Vehicle System Dynamics vol. 39 189–226 (2003) – 10.1076/vesd.39.3.189.14152
- Dahl, P. R. A Solid Friction Model. http://dx.doi.org/10.21236/ADA041920 (1968) doi:10.21236/ada041920 – 10.21236/ada041920
- Deur, J., Asgari, J. & Hrovat, D. A 3D Brush-type Dynamic Tire Friction Model. Vehicle System Dynamics vol. 42 133–173 (2004) – 10.1080/00423110412331282887
- (2009)
- Freidovich, L., Robertsson, A., Shiriaev, A. & Johansson, R. LuGre-Model-Based Friction Compensation. IEEE Transactions on Control Systems Technology vol. 18 194–200 (2010) – 10.1109/tcst.2008.2010501
- Hirschorn, R. M. & Miller, G. Control of nonlinear systems with friction. IEEE Transactions on Control Systems Technology vol. 7 588–595 (1999) – 10.1109/87.784422
- Huang, S. N., Tan, K. K. & Lee, T. H. Adaptive motion control using neural network approximations. Automatica vol. 38 227–233 (2002) – 10.1016/s0005-1098(01)00192-3
- Jeltsema, D., Ortega, R. & M.A. Scherpen, J. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica vol. 40 1643–1646 (2004) – 10.1016/j.automatica.2004.04.007
- Koopman, J., Jeltsema, D. & Verhaegen, M. Port-Hamiltonian description and analysis of the LuGre friction model. Simulation Modelling Practice and Theory vol. 19 959–968 (2011) – 10.1016/j.simpat.2010.11.008
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Swevers, J., Al-Bender, F., Ganseman, C. G. & Projogo, T. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control vol. 45 675–686 (2000) – 10.1109/9.847103
- van der Schaft, (1999)
- Vedagarbha, P., Dawson, D. M. & Feemster, M. Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects. Proceedings of the 1997 American Control Conference (Cat. No.97CH36041) 2284–2288 vol.4 (1997) doi:10.1109/acc.1997.609019 – 10.1109/acc.1997.609019
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493