Reduced-order modeling of Hamiltonian formulation in flexible multibody dynamics: Theory and simulations
Authors
Shuonan Dong, Ryo Kuzuno, Keisuke Otsuka, Kanjuro Makihara
Abstract
Flexible multibody dynamics has been developed as an effective method for analyzing mechanical structures, wherein the Hamiltonian formulation draws attention for advantages such as the systematic handling of systems with varying mass. However, the utilization of the finite element method typically results in a large number of variables, which deteriorates computational efficiency. An effective method to reduce the number of variables (coordinates and canonical conjugate momentum) in Hamiltonian formulation needs to be presented. This paper proposes a novel reduced-order modeling of the Hamiltonian formulation based on the component mode synthesis method. A novel definition of momentum is proposed to construct the equation of motion. Compared with conventional Hamiltonian formulations, not only generalized coordinates but also momentum is reduced. By combining the absolute nodal coordinate formulation with the proposed formulation, it is applicable to analyze nonlinear structures with large deformation and rotations. Four numerical simulations were conducted to evaluate the performance of the proposed formulation, and calculation time reductions of 52.1 %, 83.6 %, 93.4 %, and 81.5 % were achieved. Overall, the proposed Hamiltonian formulation exhibits high calculation efficiency, good numerical stability, and high accuracy.
Keywords
Reduced-order modeling; Hamiltonian formulation; Flexible multibody dynamics; Component mode synthesis method
Citation
- Journal: Applied Mathematical Modelling
- Year: 2025
- Volume: 144
- Issue:
- Pages: 116055
- Publisher: Elsevier BV
- DOI: 10.1016/j.apm.2025.116055
BibTeX
@article{Dong_2025,
title={{Reduced-order modeling of Hamiltonian formulation in flexible multibody dynamics: Theory and simulations}},
volume={144},
ISSN={0307-904X},
DOI={10.1016/j.apm.2025.116055},
journal={Applied Mathematical Modelling},
publisher={Elsevier BV},
author={Dong, Shuonan and Kuzuno, Ryo and Otsuka, Keisuke and Makihara, Kanjuro},
year={2025},
pages={116055}
}
References
- Shabana, (2020)
- Wu, M., Shi, Z., Xiao, T. & Ang, H. Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar-powered UAV. Aerospace Science and Technology vol. 91 1–11 (2019) – 10.1016/j.ast.2019.05.013
- Otsuka, Consistent strain-based multifidelity modeling for geometrically nonlinear beam structures. J. Comput. Nonlinear Dyn. (2022)
- Fujiwara, Numerical approach to modeling flexible body motion with large deformation, displacement and time-varying length. Mech. Eng. J. (2017)
- Chen, Z., Ren, H., Fan, W. & Zhang, L. Dynamic modeling and analysis of a large-scale hoop-column antenna using the referenced nodal coordinate formulation. Applied Mathematical Modelling vol. 125 738–755 (2024) – 10.1016/j.apm.2023.09.003
- Yang, C. & Gong, Y. An enhanced absolute nodal coordinate formulation for efficient modeling and analysis of long torsion-free cable structures. Applied Mathematical Modelling vol. 123 406–429 (2023) – 10.1016/j.apm.2023.07.014
- Yan, Y., Carrera, E., Pagani, A., Kaleel, I. & de Miguel, A. G. Isogeometric analysis of 3D straight beam-type structures by Carrera Unified Formulation. Applied Mathematical Modelling vol. 79 768–792 (2020) – 10.1016/j.apm.2019.11.003
- Fan, W., Zhang, S., Zhu, W. & Zhu, H. An efficient dynamic formulation for the vibration analysis of a multi-span power transmission line excited by a moving deicing robot. Applied Mathematical Modelling vol. 103 619–635 (2022) – 10.1016/j.apm.2021.10.040
- Sherif, K. & Nachbagauer, K. A Detailed Derivation of the Velocity-Dependent Inertia Forces in the Floating Frame of Reference Formulation. Journal of Computational and Nonlinear Dynamics vol. 9 (2014) – 10.1115/1.4026083
- Simo, J. C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering vol. 49 55–70 (1985) – 10.1016/0045-7825(85)90050-7
- Otsuka, Recent advances in the absolute nodal coordinate formulation: literature review. J. Comput. Nonlinear Dynam. (2022)
- Gerstmayr, J. & Shabana, A. A. Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation. Nonlinear Dynamics vol. 45 109–130 (2006) – 10.1007/s11071-006-1856-1
- Wang, T., Wang, J. & Xu, M. Three new triangular thick plate/shell elements based on absolute nodal coordinate formulation. International Journal of Non-Linear Mechanics vol. 155 104476 (2023) – 10.1016/j.ijnonlinmec.2023.104476
- Olshevskiv, Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. (2014)
- Sun, J., Tian, Q. & Hu, H. Topology optimization based on level set for a flexible multibody system modeled via ANCF. Structural and Multidisciplinary Optimization vol. 55 1159–1177 (2016) – 10.1007/s00158-016-1558-3
- Yu, Z., Cui, Y., Zhang, Q., Liu, J. & Qin, Y. Thermo-mechanical coupled analysis of V-belt drive system via absolute nodal coordinate formulation. Mechanism and Machine Theory vol. 174 104906 (2022) – 10.1016/j.mechmachtheory.2022.104906
- Wijker, (2004)
- CRAIG, R. R., JR. & BAMPTON, M. C. C. Coupling of substructures for dynamic analyses. AIAA Journal vol. 6 1313–1319 (1968) – 10.2514/3.4741
- Gerstmayr, J. & Ambrósio, J. A. C. Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems. International Journal for Numerical Methods in Engineering vol. 73 1518–1546 (2007) – 10.1002/nme.2133
- Kobayashi, N., Wago, T. & Sugawara, Y. Reduction of system matrices of planar beam in ANCF by component mode synthesis method. Multibody System Dynamics vol. 26 265–281 (2011) – 10.1007/s11044-011-9259-6
- Otsuka, K. & Makihara, K. Deployment Simulation Using Absolute Nodal Coordinate Plate Element for Next-Generation Aerospace Structures. AIAA Journal vol. 56 1266–1276 (2018) – 10.2514/1.j056477
- Tian, Model-order reduction of flexible multibody dynamics via free-interface component mode synthesis method. J. Comput. Nonlin. Dyn. (2020)
- Kim, E., Kim, H. & Cho, M. Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dynamics vol. 87 1901–1915 (2016) – 10.1007/s11071-016-3161-y
- Luo, K., Hu, H., Liu, C. & Tian, Q. Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Computer Methods in Applied Mechanics and Engineering vol. 324 573–594 (2017) – 10.1016/j.cma.2017.06.029
- Otsuka, K., Wang, Y., Palacios, R. & Makihara, K. Strain-Based Geometrically Nonlinear Beam Formulation for Rigid–Flexible Multibody Dynamic Analysis. AIAA Journal vol. 60 4954–4968 (2022) – 10.2514/1.j061516
- Idelsohn, S. R. & Cardona, A. A reduction method for nonlinear structural dynamic analysis. Computer Methods in Applied Mechanics and Engineering vol. 49 253–279 (1985) – 10.1016/0045-7825(85)90125-2
- Touzé, C., Vizzaccaro, A. & Thomas, O. Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dynamics vol. 105 1141–1190 (2021) – 10.1007/s11071-021-06693-9
- Wu, L. & Tiso, P. Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody System Dynamics vol. 36 405–425 (2015) – 10.1007/s11044-015-9476-5
- Bui, T. A., Park, J. & Kim, J.-S. A reduced-order model for geometrically nonlinear curved beam structures with substructuring techniques. International Journal of Non-Linear Mechanics vol. 162 104724 (2024) – 10.1016/j.ijnonlinmec.2024.104724
- Yuan, T., Fan, W. & Ren, H. A general nonlinear order-reduction method based on the referenced nodal coordinate formulation for a flexible multibody system. Mechanism and Machine Theory vol. 185 105290 (2023) – 10.1016/j.mechmachtheory.2023.105290
- Yuan, T., Fan, W. & Ren, H. An accurate system-level nonlinear order-reduction for the flexible solar array system using global modes. Thin-Walled Structures vol. 209 112890 (2025) – 10.1016/j.tws.2024.112890
- Feng, (2010)
- Dong, S., Otsuka, K. & Makihara, K. Hamiltonian formulation with reduced variables for flexible multibody systems under linear constraints: Theory and experiment. Journal of Sound and Vibration vol. 547 117535 (2023) – 10.1016/j.jsv.2022.117535
- Dong, S., Kuzuno, R., Otsuka, K. & Makihara, K. A novel and efficient Hamiltonian dynamic analysis approach for constraint force determination in flexible multibody systems. Journal of Sound and Vibration vol. 588 118517 (2024) – 10.1016/j.jsv.2024.118517
- Dirac, (1964)
- Lankarani, Application of the canonical equations of motion in problems of constrained multibody systems with intermittent motion. (1988)
- Hara, K. & Watanabe, M. Development of an efficient calculation procedure for elastic forces in the ANCF beam element by using a constrained formulation. Multibody System Dynamics vol. 43 369–386 (2017) – 10.1007/s11044-017-9594-3
- Hara, K. & Watanabe, M. Formulation of the nonlinear sloshing-structure coupled problem based on the Hamiltonian mechanics for constraint systems. Journal of Fluids and Structures vol. 62 104–124 (2016) – 10.1016/j.jfluidstructs.2015.12.011
- Chadaj, K., Malczyk, P. & Fraczek, J. A Parallel Recursive Hamiltonian Algorithm for Forward Dynamics of Serial Kinematic Chains. IEEE Transactions on Robotics vol. 33 647–660 (2017) – 10.1109/tro.2017.2654507
- Udwadia, F. E. Constrained motion of Hamiltonian systems. Nonlinear Dynamics vol. 84 1135–1145 (2015) – 10.1007/s11071-015-2558-3
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian flexible multibody dynamics. Multibody System Dynamics vol. 51 343–375 (2020) – 10.1007/s11044-020-09758-6
- Jalón, (1994)
- Bayo, E., Jimenez, J. M., Serna, M. A. & Bastero, J. M. Penalty based Hamiltonian equations for the dynamic analysis of constrained mechanical systems. Mechanism and Machine Theory vol. 29 725–737 (1994) – 10.1016/0094-114x(94)90114-7
- Bayo, On the use of the canonical equations of motion for the dynamic analysis of constrained multibody systems. (1992)
- Kim, S. S. & Vanderploeg, M. J. A General and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transformations. Journal of Mechanisms, Transmissions, and Automation in Design vol. 108 176–182 (1986) – 10.1115/1.3260799
- Peng, L. & Mohseni, K. Symplectic Model Reduction of Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 A1–A27 (2016) – 10.1137/140978922
- Peng, H., Song, N. & Kan, Z. Data-driven model order reduction with proper symplectic decomposition for flexible multibody system. Nonlinear Dynamics vol. 107 173–203 (2021) – 10.1007/s11071-021-06990-3
- Herkert, Dictionary-based online-adaptive structure-preserving model order reduction for parametric hamiltonian systems. Adv. Comput. Math. (2024)
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- BERZERI, M. & SHABANA, A. A. DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION. Journal of Sound and Vibration vol. 235 539–565 (2000) – 10.1006/jsvi.1999.2935
- Holm, (2009)
- Peet, M. M. The orbital mechanics of space elevator launch systems. Acta Astronautica vol. 179 153–171 (2021) – 10.1016/j.actaastro.2020.10.032
- Pappalardo, A new ANCF/CRBF fully parameterized plate finite element. J. Comput. Nonlin. Dyn. (2017)