Proportional observer design for port Hamiltonian systems using the contraction analysis approach
Authors
Saida Zenfari, Mohamed Laabissi, Mohammed Elarbi Achhab
Abstract
A simple proportional observer design method is presented for a class of linear port Hamiltonian systems. This observer design approach is based on the use of a powerful tool derived from continuum mechanics and differential geometry, known as contraction analysis. Under two verifiable assumptions, it is shown that error dynamics between the plant and the observer states converges exponentially to zero. Finally, our design method is applied to two physical systems arising from different domains: The DC motor and the RLC circuit.
Keywords
Port Hamiltonian systems; Observer design; Contraction analysis; Lyapunov equation; Quadratic Hamiltonian function
Citation
- Journal: International Journal of Dynamics and Control
- Year: 2022
- Volume: 10
- Issue: 2
- Pages: 403–408
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s40435-021-00830-3
BibTeX
@article{Zenfari_2021,
title={{Proportional observer design for port Hamiltonian systems using the contraction analysis approach}},
volume={10},
ISSN={2195-2698},
DOI={10.1007/s40435-021-00830-3},
number={2},
journal={International Journal of Dynamics and Control},
publisher={Springer Science and Business Media LLC},
author={Zenfari, Saida and Laabissi, Mohamed and Achhab, Mohammed Elarbi},
year={2021},
pages={403--408}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- A Van Der Schaft. Van Der Schaft A, Maschke B (1995) The Hamiltonian formulation of energy conserving physical systems with external ports. AEÜ Int J Electron Commun 49:362–371 (1995)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Shim, H., Seo, J. H. & Teel, A. R. Nonlinear observer design via passivation of error dynamics. Automatica vol. 39 885–892 (2003) – 10.1016/s0005-1098(03)00023-2
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine vol. 49 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Y Wang. Wang Y, Ge SS, Cheng D (2005) Observer and observer-based $H^\infty$ control of generalized Hamiltonian systems. Sci China Ser F 48(2):211–224 (2005)
- Bakhshande, F. & Söffker, D. Proportional-Integral-Observer: A brief survey with special attention to the actual methods using ACC Benchmark. IFAC-PapersOnLine vol. 48 532–537 (2015) – 10.1016/j.ifacol.2015.05.049
- Borase, R. P., Maghade, D. K., Sondkar, S. Y. & Pawar, S. N. A review of PID control, tuning methods and applications. International Journal of Dynamics and Control vol. 9 818–827 (2020) – 10.1007/s40435-020-00665-4
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Lohmiller, W. & Slotine, J.-J. E. Control system design for mechanical systems using contraction theory. IEEE Transactions on Automatic Control vol. 45 984–989 (2000) – 10.1109/9.855568
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- HK Khalil. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, New York (2002)
- A Van Der Schaft. Van Der Schaft A, Maschke B (1995) The Hamiltonian formulation of energy conserving physical systems with external ports. AEÜ Int J Electron Commun 49:362–371 (1995)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Medianu, S. & Lefèvre, L. Structural identifiability of linear Port Hamiltonian systems. Systems & Control Letters vol. 151 104915 (2021) – 10.1016/j.sysconle.2021.104915
- NAVARRO, D., CORTES, D. & GALAZ-LARIOS, M. A Port-Hamiltonian Approach to Control DC-DC Power Converters. Studies in Informatics and Control vol. 26 (2017) – 10.24846/v26i3y201702
- Zhang, M., Ortega, R., Jeltsema, D. & Su, H. Further deleterious effects of the dissipation obstacle in control-by-interconnection of port-Hamiltonian systems. Automatica vol. 61 227–231 (2015) – 10.1016/j.automatica.2015.08.010