Proportional-Integral passivity-based control design of perturbed non-standard Hamiltonian systems
Authors
Thanh Sang Nguyen, Ngoc Ha Hoang, Chee Keong Tan, Mohd Azlan Bin Hussain
Abstract
This paper proposes a proportional-integral passivity-based control strategy to stabilize the transformed model of a chemical reaction system, described by vessel extents. It is shown that the transformed model belongs to a class of perturbed non-standard Port-Hamiltonian systems with time-varying unmatched (endogenous) disturbance, thereby limiting the applicability of the integral-action-based design method proposed by Donaire and Junco [A. Donaire and S. Junco. Automatica, 2009] because of a lack of interconnection. The developed method adapts a change of coordinates for the design to add an appropriate interconnection between relative-degree-one states and higher-relative-degree states that allows injecting a necessary damping to achieve asymptotic stability and preserving the PH representation of extended closed-loop system. A reversible reaction system is used to illustrate the proposed approach.
Keywords
Proportional-Integral action; passivity; chemical systems; vessel extents
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 19–24
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.049
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Nguyen_2021,
title={{Proportional-Integral passivity-based control design of perturbed non-standard Hamiltonian systems}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.049},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Nguyen, Thanh Sang and Hoang, Ngoc Ha and Tan, Chee Keong and Bin Hussain, Mohd Azlan},
year={2021},
pages={19--24}
}
References
- Bequette, (1998)
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Duindam, (2009)
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Transactions on Automatic Control vol. 62 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Ha Hoang, N., Couenne, F., Le Gorrec, Y., Chen, C. L. & Ydstie, B. E. Passivity-based nonlinear control of CSTR via asymptotic observers. Annual Reviews in Control vol. 37 278–288 (2013) – 10.1016/j.arcontrol.2013.09.007
- Hoang, N. H., Dochain, D. & Hudon, N. A thermodynamic approach towards Lyapunov based control of reaction rate. IFAC Proceedings Volumes vol. 47 9117–9122 (2014) – 10.3182/20140824-6-za-1003.01958
- Ha Hoang, N., Rodrigues, D. & Bonvin, D. Revisiting the concept of extents for chemical reaction systems using an enthalpy balance. Computers & Chemical Engineering vol. 136 106652 (2020) – 10.1016/j.compchemeng.2019.106652
- Khalil, (2002)
- Marquez-Ruiz, A., Méndez-Blanco, C. S. & Özkan, L. Modeling of reactive batch distillation processes for control. Computers & Chemical Engineering vol. 121 86–98 (2019) – 10.1016/j.compchemeng.2018.10.010
- Marquez-Ruiz, A., Mendez-Blanco, C. & Özkan, L. Constrained Control and Estimation of Homogeneous Reaction Systems Using Extent-Based Linear Parameter Varying Models. Industrial & Engineering Chemistry Research vol. 59 2242–2251 (2020) – 10.1021/acs.iecr.9b04412
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Thanh Sang, N., Chee Keong, T., Ngoc Ha, H. & Hussain, M. A. Control of reaction systems using decoupled dynamics via perturbed Hamiltonian formulation. IFAC-PapersOnLine vol. 53 11527–11532 (2020) – 10.1016/j.ifacol.2020.12.628
- Nguyen, T. S., Tan, C. K., Hoang, N. H., Hussain, M. A. & Bonvin, D. A perturbed Port-Hamiltonian approach for the stabilization of homogeneous reaction systems via the control of vessel extents. Computers & Chemical Engineering vol. 154 107458 (2021) – 10.1016/j.compchemeng.2021.107458
- Nguyen, T. S., Hoang, N. H., Hussain, M. A. & Tan, C. K. Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control vol. 80 152–166 (2019) – 10.1016/j.jprocont.2019.05.014
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., Monshizadeh, N., Monshizadeh, P., Bazylev, D. & Pyrkin, A. Permanent magnet synchronous motors are globally asymptotically stabilizable with PI current control. Automatica vol. 98 296–301 (2018) – 10.1016/j.automatica.2018.09.031
- Ortega, (2013)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rodrigues, D., Srinivasan, S., Billeter, J. & Bonvin, D. Variant and invariant states for chemical reaction systems. Computers & Chemical Engineering vol. 73 23–33 (2015) – 10.1016/j.compchemeng.2014.10.009
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Ryalat, M., Laila, D. S., ElMoaqet, H. & Almtireen, N. Dynamic IDA-PBC control for weakly-coupled electromechanical systems. Automatica vol. 115 108880 (2020) – 10.1016/j.automatica.2020.108880
- Van der Schaft, (2000)
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283