Authors

Marco Cupelli, Sriram Karthik Gurumurthy, Siddharth Bhanderi, Lisette Cupelli, Antonello Monti

Abstract

This paper presents a control scheme for the secondary level voltage control in DC Microgrids consisting of parallel operated converters and Constant Power Loads (CPLs). CPLs might cause a destabilizing effect on the DC bus voltage. The proposed control law uses the Port-Hamiltonian modelling framework applied to the Line Regulating Converters (LRCs) and filters and compensates the deviations of the voltage from its nominal value. This controller uses the concept of energy shaping and passivity; the idea behind this concept is to shape the energy in such way that the resulting closed loop system is Port-Hamiltonian. It is shown that the resulting Port-Controlled Hamiltonian (PCH) systems can be interconnected and large signal stability for all possible operating points can be guaranteed. Simulation results on a Microgrid test system display the good performance and stability of the proposed control scheme.

Citation

  • Journal: 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE)
  • Year: 2019
  • Volume:
  • Issue:
  • Pages: 379–384
  • Publisher: IEEE
  • DOI: 10.1109/cpere45374.2019.8980232

BibTeX

@inproceedings{Cupelli_2019,
  title={{Power Sharing Control in Microgrids - an Approach Guaranteeing Large Signal Stability}},
  DOI={10.1109/cpere45374.2019.8980232},
  booktitle={{2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE)}},
  publisher={IEEE},
  author={Cupelli, Marco and Gurumurthy, Sriram Karthik and Bhanderi, Siddharth and Cupelli, Lisette and Monti, Antonello},
  year={2019},
  pages={379--384}
}

Download the bib file

References

  • Kocewiak, Ł. H., Hjerrild, J. & Bak, C. L. Wind turbine converter control interaction with complex wind farm systems. IET Renewable Power Generation vol. 7 380–389 (2013) – 10.1049/iet-rpg.2012.0209
  • Cupelli, M., de Paz Carro, M. & Monti, A. Hardware in the loop implementation of linearizing state feedback on MVDC ship systems and the significance of longitudinal parameters. 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS) 1–6 (2015) doi:10.1109/esars.2015.7101470 – 10.1109/esars.2015.7101470
  • Bai, H., Wang, X., Loh, P. C. & Blaabjerg, F. Passivity Enhancement of Grid-Tied Converters by Series LC-Filtered Active Damper. IEEE Transactions on Industrial Electronics vol. 64 369–379 (2017) – 10.1109/tie.2016.2562604
  • Cupelli, M. et al. Port Controlled Hamiltonian Modeling and IDA-PBC Control of Dual Active Bridge Converters for DC Microgrids. IEEE Transactions on Industrial Electronics vol. 66 9065–9075 (2019) – 10.1109/tie.2019.2901645
  • Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
  • Cupelli, M., Bhanderi, S., Gurumurthy, S. K. & Monti, A. A Structure Preserving Approach for Control of Future Distribution Grids and Microgrids Guaranteeing Large Signal Stability. 2018 IEEE Conference on Control Technology and Applications (CCTA) 1166–1173 (2018) doi:10.1109/ccta.2018.8511563 – 10.1109/ccta.2018.8511563
  • Anand, S., Fernandes, B. G. & Guerrero, J. Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids. IEEE Transactions on Power Electronics vol. 28 1900–1913 (2013) – 10.1109/tpel.2012.2215055
  • Lopes, J. A. P., Moreira, C. L. & Madureira, A. G. Defining Control Strategies for MicroGrids Islanded Operation. IEEE Transactions on Power Systems vol. 21 916–924 (2006) – 10.1109/tpwrs.2006.873018
  • Dragicevic, T., Lu, X., Vasquez, J. & Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics 1–1 (2015) doi:10.1109/tpel.2015.2478859 – 10.1109/tpel.2015.2478859
  • Jin, Z., Meng, L. & Guerrero, J. M. Constant power load instability mitigation in DC shipboard power systems using negative series virtual inductor method. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 6789–6794 (2017) doi:10.1109/iecon.2017.8217186 – 10.1109/iecon.2017.8217186
  • rahimi, Adressing negative impedance instability problem of constant power loads Comprehensive view encompassing entire system from the load to the source Illinois Institute of Technology (2008)
  • cupelli, Advanced control methods for robust stability of MVDC systems (2015)
  • Riccobono, A. et al. Stability of Shipboard DC Power Distribution: Online Impedance-Based Systems Methods. IEEE Electrification Magazine vol. 5 55–67 (2017) – 10.1109/mele.2017.2718858
  • Xu, L. & Chen, D. Control and Operation of a DC Microgrid With Variable Generation and Energy Storage. IEEE Transactions on Power Delivery vol. 26 2513–2522 (2011) – 10.1109/tpwrd.2011.2158456
  • Tuominen, J., Repo, S. & Kulmala, A. Coordinated voltage control algorithms tested in real time digital simulator. 2014 Power Systems Computation Conference 1–7 (2014) doi:10.1109/pscc.2014.7038471 – 10.1109/pscc.2014.7038471
  • Cupelli, M., Mirz, M. & Monti, A. A comparison of backstepping and LQG control for stabilizing MVDC microgrids with Constant Power Loads. 2015 IEEE Eindhoven PowerTech (2015) doi:10.1109/ptc.2015.7232564 – 10.1109/ptc.2015.7232564