Authors

Dimitri Jeltsema, Jacquelien M. A. Scherpen

Abstract

This chapter presents a systematic method to describe a large class of switched-mode power converters within the Brayton–Moser (BM) framework, a framework that has proven to be useful for analysis and control purposes. The approach forms an alternative to the switched Lagrangian and (port-)Hamiltonian formulations. The proposed methodology allows for the inclusion of often encountered devices like diodes, nonlinear (multi-port) resistors, and equivalent series resistors, a feature that does not seem feasible in the switched Lagrangian formulation. Additionally, and besides the fact that the BM equations allow for almost any type of nonlinear resistor, the framework constitutes a practical advantage since in most control applications the usual measured quantities are voltages and currents—instead of fluxes and charges as with the Lagrangian or (port-)Hamiltonian approaches. The application of the proposed framework to stability analysis, new passivity properties and control is briefly highlighted.

Keywords

boost converter, damping injection, mixed potential function, switched-mode power converters, topologically complete

Citation

BibTeX

@inbook{Jeltsema_2012,
  title={{Power-Based Modelling}},
  ISBN={9781447128854},
  ISSN={2193-1577},
  DOI={10.1007/978-1-4471-2885-4_8},
  booktitle={{Dynamics and Control of Switched Electronic Systems}},
  publisher={Springer London},
  author={Jeltsema, Dimitri and Scherpen, Jacquelien M. A.},
  year={2012},
  pages={245--271}
}

Download the bib file

References

  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
  • C.A. Desoer, Basic Circuit Theory (1969)
  • Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica 48, 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
  • Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach (2009)
  • Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999)10.1016/s0005-1098(98)00196-4
  • Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica 46, 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
  • Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
  • García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica 46, 127–132 (2010) – 10.1016/j.automatica.2009.10.012
  • Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 18, 688–698 (2010) – 10.1109/tcst.2009.2023669
  • Hill, D. & Moylan, P. The stability of nonlinear dissipative systems. IEEE Trans. Automat. Contr. 21, 708–711 (1976) – 10.1109/tac.1976.1101352
  • S. Hiti, Proc. of the Applied Power Electronics Conference (1994)
  • Jeltsema, D. & Scherpen, J. M. A. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters. IEEE Trans. Automat. Contr. 49, 1333–1344 (2004) – 10.1109/tac.2004.832236
  • Jeltsema, D. & Scherpen, J. M. A. On Brayton and Moser’s missing stability theorem. IEEE Trans. Circuits Syst. II 52, 550–552 (2005) – 10.1109/tcsii.2005.850523
  • Control in Power Electronics: Selected Problems (2002)
  • Leonhard, W. Control of Electrical Drives. Power Systems (Springer Berlin Heidelberg, 2001). doi:10.1007/978-3-642-56649-3 – 10.1007/978-3-642-56649-3
  • Moser, J. K. Bistable Systems of Differential Equations with Applications to Tunnel Diode Circuits. IBM J. Res. & Dev. 5, 226–240 (1961) – 10.1147/rd.53.0226
  • Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Automat. Contr. 48, 1762–1767 (2003) – 10.1109/tac.2003.817918
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
  • C.J. Savant Jr., Electronic Design: Circuits and Systems (1991)
  • Scherpen, J. M. A., Jeltsema, D. & Klaassens, J. B. Lagrangian modeling of switching electrical networks. Systems & Control Letters 48, 365–374 (2003) – 10.1016/s0167-6911(02)00290-6
  • Sira-Ramirez, H. & deNieto, M. D. A Lagrangian approach to average modeling of pulsewidth-modulation controlled DC-to-DC power converters. IEEE Trans. Circuits Syst. I 43, 427 (1996) – 10.1109/81.502217
  • A. Stöhr, Arch. Electron. Übertr. Tech. (1953)
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Weiss, L., Mathis, W. & Trajkovic, L. A generalization of Brayton-Moser’s mixed potential function. IEEE Trans. Circuits Syst. I 45, 423–427 (1998) – 10.1109/81.669065
  • Wells, D. A. A ``Power Function’’ for the Determination of Lagrangian Generalized Forces. Journal of Applied Physics 16, 535–538 (1945) – 10.1063/1.1707623
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493