Port-Hamiltonian Models for Flow of Incompressible Fluids in Rigid Pipelines with Faults
Authors
Lizeth Torres, Gildas Besancon
Abstract
This paper presents port-Hamiltonian models for describing flow dynamics of incompressible fluids in rigid pipelines with faults. Two types of faults are addressed in this paper: leaks and partial blockages. In order to facilitate the understanding of the modeling, the proposed formulation is introduced starting from the analogy between electrical and hydraulic circuits. Thanks to the port-Hamiltonian formalism the models proposed here have a particular structure that makes them plug-in and modular, so that they can be interconnected for building holistic models for faulty water distribution networks.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 2946–2951
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9029170
BibTeX
@inproceedings{Torres_2019,
title={{Port-Hamiltonian Models for Flow of Incompressible Fluids in Rigid Pipelines with Faults}},
DOI={10.1109/cdc40024.2019.9029170},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Torres, Lizeth and Besancon, Gildas},
year={2019},
pages={2946--2951}
}
References
- axworthy, Water distribution network modelling from steady state to waterhammer (1998)
- kaltenbacher, A dynamic model for smart water distribu-¨ tion networks. Proc Comput Control Water Ind Conf (2017)
- Capponi, C., Ferrante, M., Zecchin, A. C. & Gong, J. Leak Detection in a Branched System by Inverse Transient Analysis with the Admittance Matrix Method. Water Resour Manage 31, 4075–4089 (2017) – 10.1007/s11269-017-1730-6
- Duan, H.-F. Transient frequency response based leak detection in water supply pipeline systems with branched and looped junctions. Journal of Hydroinformatics 19, 17–30 (2016) – 10.2166/hydro.2016.008
- Verde, C., Torres, L. & González, O. Decentralized scheme for leaks’ location in a branched pipeline. Journal of Loss Prevention in the Process Industries 43, 18–28 (2016) – 10.1016/j.jlp.2016.03.023
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Jeltsema, D. & Doria-Cerezo, A. Port-Hamiltonian Formulation of Systems With Memory. Proc. IEEE 100, 1928–1937 (2012) – 10.1109/jproc.2011.2164169
- kotyczka, Discretized models for networks of distributed parameter port-hamiltonian systems. nDS’13 Proceedings of 8th International Workshop on Multidimensional Systems VDE (2013)
- todini, A gradientmethodforthesolutionofloopedpipe networks. Computer Applications in Water Supply (1988)
- Nault, J. D. & Karney, B. W. Improved Rigid Water Column Formulation for Simulating Slow Transients and Controlled Operations. J. Hydraul. Eng. 142, (2016) – 10.1061/(asce)hy.1943-7900.0001145
- rossman, Epanet 2: users manual. (2000)
- wylie, Fluid Transients (1978)
- chaudhry, Applied Hydraulic Transients (1979)
- wood, Pipe network transientsdistributed and lumped parameter modeling. Proc 6th Int Conf Pressure Surges (1990)
- Zecchin, A. C., Simpson, A. R., Lambert, M. F., White, L. B. & Vítkovský, J. P. Transient Modeling of Arbitrary Pipe Networks by a Laplace-Domain Admittance Matrix. J. Eng. Mech. 135, 538–547 (2009) – 10.1061/(asce)0733-9399(2009)135:6(538)
- Real-Time Monitoring and Operational Control of Drinking-Water Systems. Advances in Industrial Control (Springer International Publishing, 2017). doi:10.1007/978-3-319-50751-4 – 10.1007/978-3-319-50751-4
- Ivanov, K. P. & Bournaski, E. G. Combined distributed and lumped parameters model for transient flow analysis in complex pipe networks. Computer Methods in Applied Mechanics and Engineering 130, 47–56 (1996) – 10.1016/0045-7825(95)00894-2
- Pérez, R. et al. Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice 19, 1157–1167 (2011) – 10.1016/j.conengprac.2011.06.004
- lopezlena, Computer implementation of a boundary feedback leak detector and estimator for pipelines I: Transient model. Mems 160 Congreso Latinoamericano de Control Automatico´ (2014)
- Adamkowski, A. & Lewandowski, M. Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation. Journal of Fluids Engineering 128, 1351–1363 (2006) – 10.1115/1.2354521
- wellstead, Introduction to Physical System Modelling (1979)
- Maré, J. Aerospace Actuators 1. (2016) doi:10.1002/9781119307662 – 10.1002/9781119307662
- white, Fluid mechanics, wcb. (1999)
- Islam, M. R. & Chaudhry, M. H. Modeling of Constituent Transport in Unsteady Flows in Pipe Networks. J. Hydraul. Eng. 124, 1115–1124 (1998) – 10.1061/(asce)0733-9429(1998)124:11(1115)
- Cabrera, E., Garcia-Serra, J. & Iglesias, P. L. Modelling Water Distribution Networks: From Steady Flow to Water Hammer. Water Science and Technology Library 3–32 (1995) doi:10.1007/978-94-017-1841-7_1 – 10.1007/978-94-017-1841-7_1