Port-Hamiltonian Modelling of Complex Non-Linear Systems, Application to a Liquid Propelled Rocket Engine
Authors
J. Gibart, H. Piet-Lahanier, F. Farago
Abstract
Port-Hamiltonian (PH) systems theory is a well-established framework for modelling the dynamics of non-linear systems. It has been used extensively for complex mechanical systems. Recent developments have extended this representation to multiphysical systems. In this paper, a PH formulation of a Liquid Propelled Rocket Engine model is proposed. Starting from a classical state-space representation, a new model is derived which allows to demonstrate the global passivity feature of the system using the property of passivity inheritance by composition of several PH subsystems. The resulting representation allows to consider passivity-based control perspective for this class of complex thermodynamics system.
Keywords
Port-Hamiltonian; Modelling; Non-linear; Aerospace; Rocket Engine
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 131–136
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.269
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Gibart_2024,
title={{Port-Hamiltonian Modelling of Complex Non-Linear Systems, Application to a Liquid Propelled Rocket Engine}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.269},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Gibart, J. and Piet-Lahanier, H. and Farago, F.},
year={2024},
pages={131--136}
}
References
- Breedveld, (1984)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Duindam, (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Esquivel-Sancho, L. M., Muñoz-Arias, M., Phillips-Brenes, H. & Pereira-Arroyo, R. A Reversible Hydropump–Turbine System. Applied Sciences vol. 12 9086 (2022) – 10.3390/app12189086
- Manfletti, (2010)
- Maschke, (1993)
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 42 73–82 (1995) – 10.1109/81.372847
- Pasumarthy, A port-hamiltonian approach to modeling and interconnections of canal systems. In 16th International Symposium on Mathematical (2006)
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002