Port-Hamiltonian Modeling of Spatial Compliant Contacts
Authors
Abstract
In this paper the geometrical description of viscoelastic contacts is described from an energy consistent point of view. The proposed model is on one side simple enough to be used in real time applications and on the other captures the major features of a complete spatial geometric unisotropical contact
Keywords
port-Hamiltonian; contacts; geometry
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2003
- Volume: 36
- Issue: 2
- Pages: 17–25
- Publisher: Elsevier BV
- DOI: 10.1016/s1474-6670(17)38862-6
- Note: 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control 2003, Seville, Spain, 3-5 April 2003
BibTeX
@article{Stramigioli_2003,
title={{Port-Hamiltonian Modeling of Spatial Compliant Contacts}},
volume={36},
ISSN={1474-6670},
DOI={10.1016/s1474-6670(17)38862-6},
number={2},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Stramigioli, Stefano},
year={2003},
pages={17--25}
}
References
- Bloch, Representation of dirac structures on vector spaces and nonlinear lcv-circuits. (1999)
- Armstrong-Hélouvry, B., Dupont, P. & De Wit, C. C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30, 1083–1138 (1994) – 10.1016/0005-1098(94)90209-7
- Antonio, Robotic grasping and contact: a review. (2000)
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Cutkosky, M. R. & Wright, P. K. Friction, Stability and the Design of Robotic Fingers. The International Journal of Robotics Research 5, 20–37 (1986) – 10.1177/027836498600500402
- Vincent, Modeling the kinematics and dynamics of compliant contacts. (2003)
- Harris, (1990)
- Stamps, On the 6x6 stiffness matrix for three dimensional motions. (1995)
- Hunt, Coefficient of restitution interpreted as damping in vibroimpact. ASMEJAM (1975)
- Landzettel, Rokviss verification of advanced tele-presence concepts for future space missions. (2002)
- Marhefka, D. W. & Orin, D. E. A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst., Man, Cybern. A 29, 566–572 (1999) – 10.1109/3468.798060
- Alessia, Rolling bodies with regular surface: controllability theory and applications. Trans. IEEE on Automatic Control (2000)
- Montana, D. J. The Kinematics of Contact and Grasp. The International Journal of Robotics Research 7, 17–32 (1988) – 10.1177/027836498800700302
- Montana, The Kinematics of Contact with Compliance. Proceedings of the IEEE Conference on Robotics and Automation (1989)
- Paynter, (1960)
- Stefano, Modeling and IPC Control of Interactive Mechanical Systems: a coordinate free approach. (2001)
- Tellegen, A general network theorem, with applications. Philips Res. Rep. (1952)
- Arjan, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Ubertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, Mathematical structures in the network representation of energy-conserving physical systems. (1996)
- Visser, Screw bondgraph contact dynamics. (2002)
- Milos, Affine connections for the cartesian stiffness matrix. (1997)