Authors

Chi Zhang, Wei Zou, Liping Ma, Ningbo Cheng

Abstract

Applying jumping locomotion into autonomous mobile robot is an effective way for improving abilities to overcome barriers and pass through complex terrains. In this paper, based on the designed structural framework for bio-inspired quadruped jumping robot, dynamic model is established by utilizing port-Hamiltonian with dissipation (pHd) method, and a passivity-based control strategy for the robot joints trajectory tracking is presented. First, morphology and biomimetics knowledges of frogs (a kind of animals with excellent jumping skill) motivate us to complete a bio-inspired jumping robot framework based on frog’s motion mechanism and body structure with torsional springs as energy storage device. Then, combining system passivity and dissipation, port-Hamiltonian method is utilized to build a dynamic model for expressing the relationship of energy and force in the designed robot. Jumping process analysis of different stages is also designed for ensuring the robot to complete taking-off and landing stages successfully. Next, with the definition of extending feasible robotic joint trajectory by La Salle invariant set principle, interconnection and damping assignment passivity-based control (IDA-PBC) method is exerted to obtain a trajectory controller for realizing smoothly and stably trajectory tracking in joint space. At last, simulation results show the reasonableness of the designed framework. By comparing our method with state-feedback and sliding mode control, effectiveness of the dynamic model and trajectory controller is also verified.

Keywords

Port-Hamiltonian with dissipation(pHd); Bio-inspired jumping robot; Dynamic modeling; Interconnection and damping assignment passivity-based control(IDA-PBC)

Citation

  • Journal: Nonlinear Analysis: Hybrid Systems
  • Year: 2024
  • Volume: 53
  • Issue:
  • Pages: 101496
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.nahs.2024.101496

BibTeX

@article{Zhang_2024,
  title={{Port-Hamiltonian modeling and jumping trajectory tracking control for a bio-inspired quadruped robot}},
  volume={53},
  ISSN={1751-570X},
  DOI={10.1016/j.nahs.2024.101496},
  journal={Nonlinear Analysis: Hybrid Systems},
  publisher={Elsevier BV},
  author={Zhang, Chi and Zou, Wei and Ma, Liping and Cheng, Ningbo},
  year={2024},
  pages={101496}
}

Download the bib file

References

  • Wang, Y. et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Science Robotics vol. 2 (2017) – 10.1126/scirobotics.aan8072
  • Haldane, D. W., Yim, J. K. & Fearing, R. S. Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3345–3351 (2017) doi:10.1109/iros.2017.8206172 – 10.1109/iros.2017.8206172
  • Kelasidi, E., Liljeback, P., Pettersen, K. Y. & Gravdahl, J. T. Innovation in Underwater Robots: Biologically Inspired Swimming Snake Robots. IEEE Robotics & Automation Magazine vol. 23 44–62 (2016) – 10.1109/mra.2015.2506121
  • Zaitsev, V. et al. A locust-inspired miniature jumping robot. Bioinspiration & Biomimetics vol. 10 066012 (2015) – 10.1088/1748-3190/10/6/066012
  • Jung, G.-P. et al. JumpRoACH: A Trajectory-Adjustable Integrated Jumping–Crawling Robot. IEEE/ASME Transactions on Mechatronics vol. 24 947–958 (2019) – 10.1109/tmech.2019.2907743
  • Zhang, Biologically inspired jumping robots: a comprehensive review. Robot. Auton. Syst. (2020)
  • Zhao, J., Yan, W., Xi, N., Mutka, M. W. & Xiao, L. A miniature 25 grams running and jumping robot. 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014) doi:10.1109/icra.2014.6907609 – 10.1109/icra.2014.6907609
  • Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G. & Kim, S. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018) doi:10.1109/iros.2018.8594448 – 10.1109/iros.2018.8594448
  • Gong, D., Wang, P., Zhao, S., Du, L. & Duan, Y. Bionic quadruped robot dynamic gait control strategy based on twenty degrees of freedom. IEEE/CAA Journal of Automatica Sinica vol. 5 382–388 (2018) – 10.1109/jas.2017.7510790
  • Raibert, (1986)
  • Richards, Kinematic control of extreme jump angles in the red-legged running frog, Kassina maculata. J. Exp. Biol. (2017)
  • Lutz, G. J. & Rome, L. C. Built for Jumping: the Design of the Frog Muscular System. Science vol. 263 370–372 (1994) – 10.1126/science.8278808
  • Zhong, T., Wei, F., Zhai, Z. & Yang, W. An Untethered Miniature Soft Jumping Robot Inspired by Quadrupeds. Journal of Bionic Engineering vol. 20 1467–1480 (2023) – 10.1007/s42235-023-00342-0
  • Tang, L., Li, Y. & Li, B. Moobot: A Miniature Origami Omnidirectional Jumping Robot With High Trajectory Accuracy. IEEE Transactions on Industrial Electronics vol. 71 6032–6040 (2024) – 10.1109/tie.2023.3294629
  • Liu, P., Ma, S., Liu, S., Li, Y. & Li, B. Omnidirectional Jump Control of a Locust-Computer Hybrid Robot. Soft Robotics vol. 10 40–51 (2023) – 10.1089/soro.2021.0137
  • Yu, Hierarchical jumping optimization for hydraulic biped wheel-legged robots. Control Eng. Pract. (2023)
  • Qi, H. et al. Vertical Jump of a Humanoid Robot With CoP-Guided Angular Momentum Control and Impact Absorption. IEEE Transactions on Robotics vol. 39 3154–3166 (2023) – 10.1109/tro.2023.3271136
  • Niiyama, R., Nagakubo, A. & Kuniyoshi, Y. Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System. Proceedings 2007 IEEE International Conference on Robotics and Automation (2007) doi:10.1109/robot.2007.363848 – 10.1109/robot.2007.363848
  • Woodward, M. A. & Sitti, M. MultiMo-Bat: A biologically inspired integrated jumping–gliding robot. The International Journal of Robotics Research vol. 33 1511–1529 (2014) – 10.1177/0278364914541301
  • Wang, M., Zang, X., Fan, J. & Zhao, J. Biological Jumping Mechanism Analysis and Modeling for Frog Robot. Journal of Bionic Engineering vol. 5 181–188 (2008) – 10.1016/s1672-6529(08)60023-2
  • Yu, X. & Iida, F. Minimalistic Models of an Energy-Efficient Vertical-Hopping Robot. IEEE Transactions on Industrial Electronics vol. 61 1053–1062 (2014) – 10.1109/tie.2013.2266080
  • Zhang, J. et al. Structural-Parameter-Based Jumping-Height-and-Distance Adjustment and Obstacle Sensing of a Bio-Inspired Jumping Robot. International Journal of Advanced Robotic Systems vol. 12 (2015) – 10.5772/60579
  • Park, H.-W., Wensing, P. & Kim, S. Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds. Robotics: Science and Systems XI (2015) doi:10.15607/rss.2015.xi.047 – 10.15607/rss.2015.xi.047
  • Chignoli, (2021)
  • Arnold, (1989)
  • Siuka, (2011)
  • García‐Beltrán, C. D. et al. Passivity‐based control laws for an unmanned powered parachute aircraft. Asian Journal of Control vol. 23 2087–2096 (2021) – 10.1002/asjc.2540
  • Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018)10.1109/tac.2017.2732283
  • Guerrero-Sánchez, M. E. et al. Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load. Nonlinear Dynamics vol. 105 3225–3238 (2021) – 10.1007/s11071-021-06776-7
  • Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
  • van der Schaft, (2017)
  • Zhang, M., Ortega, R., Liu, Z. & Su, H. A new family of interconnection and damping assignment passivity-based controllers. International Journal of Robust and Nonlinear Control vol. 27 50–65 (2016) – 10.1002/rnc.3557
  • Zhong, J., Fan, J., Zhao, J. & Zhang, W. Kinematic analysis of jumping leg driven by artificial muscles. 2012 IEEE International Conference on Mechatronics and Automation 1004–1008 (2012) doi:10.1109/icma.2012.6283387 – 10.1109/icma.2012.6283387
  • Macchelli, (2002)
  • van der Schaft, A. Port-Hamiltonian Modeling for Control. Annual Review of Control, Robotics, and Autonomous Systems vol. 3 393–416 (2020)10.1146/annurev-control-081219-092250
  • Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking of a class of port Hamiltonian systems using Timed IDA-PBC technique. 2015 54th IEEE Conference on Decision and Control (CDC) 5037–5042 (2015) doi:10.1109/cdc.2015.7403007 – 10.1109/cdc.2015.7403007
  • Wang, An extraction method of frog jumping trajectory for biomimetic robot design. J. Beijing Univ. Posts Telecommun. (2008)
  • Jianjun, Y., Duotao, D., Shuang, G., Lei, H. & Shenghai, H. Sliding mode control scheme for a jumping robot with multi-joint based on floating basis. International Journal of Control vol. 85 41–49 (2012) – 10.1080/00207179.2011.638325