Port-Hamiltonian Control of GFM-VSCs With Robust Stable and Uniform Error Dynamics
Authors
Abstract
In this paper, a grid-forming (GFM) control is developed based on the nonlinear Port-Hamiltonian (PH) system theory to systematically achieve tracking control and Lyapunov-based stability by considering the power flow dynamic, voltage and current dynamics of voltage source converters (VSCs) system. The proposed controller is robust to both matched constant and periodic disturbances (e.g., grid voltage/frequency fluctuation, load change, voltage harmonics) and nonlinearities due to structural model uncertainties (e.g., output/line impedance variation, coupling effect). Compared to the conventional linear proportional resonant (PR)-based controller, the proposed PH-based nonlinear controller has uniform transient dynamic performance among different operating conditions in large disturbance rejection scenarios, resulted from the ensured closed-loop (semi)globally stable and uniform error dynamics with design facilitated configurable interconnection and damping matrices fixed by initial settings. Experimental results are presented to demonstrate the effectiveness of the proposed control framework in various working conditions.
Citation
- Journal: IEEE Access
- Year: 2023
- Volume: 11
- Issue:
- Pages: 109213–109224
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/access.2023.3321582
BibTeX
@article{Wang_2023,
title={{Port-Hamiltonian Control of GFM-VSCs With Robust Stable and Uniform Error Dynamics}},
volume={11},
ISSN={2169-3536},
DOI={10.1109/access.2023.3321582},
journal={IEEE Access},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Wang, Duo},
year={2023},
pages={109213--109224}
}
References
- Lasseter, R. H., Chen, Z. & Pattabiraman, D. Grid-Forming Inverters: A Critical Asset for the Power Grid. IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 8 925–935 (2020) – 10.1109/jestpe.2019.2959271
- Rocabert, J., Luna, A., Blaabjerg, F. & Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Transactions on Power Electronics vol. 27 4734–4749 (2012) – 10.1109/tpel.2012.2199334
- Han, H. et al. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Transactions on Smart Grid vol. 7 200–215 (2016) – 10.1109/tsg.2015.2434849
- Han, Y., Li, H., Shen, P., Coelho, E. A. A. & Guerrero, J. M. Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids. IEEE Transactions on Power Electronics vol. 32 2427–2451 (2017) – 10.1109/tpel.2016.2569597
- Farrokhabadi, M. et al. Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems vol. 35 13–29 (2020) – 10.1109/tpwrs.2019.2925703
- Olivares, D. E. et al. Trends in Microgrid Control. IEEE Transactions on Smart Grid vol. 5 1905–1919 (2014) – 10.1109/tsg.2013.2295514
- Amin, M. & Molinas, M. Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods. IEEE Transactions on Industry Applications vol. 53 5014–5030 (2017) – 10.1109/tia.2017.2712692
- Kabalan, M., Singh, P. & Niebur, D. Large Signal Lyapunov-Based Stability Studies in Microgrids: A Review. IEEE Transactions on Smart Grid vol. 8 2287–2295 (2017) – 10.1109/tsg.2016.2521652
- Handbook of Electrical Power System Dynamics. (2013) doi:10.1002/9781118516072 – 10.1002/9781118516072
- Zhong, Q.-C., Wang, Y. & Ren, B. UDE-Based Robust Droop Control of Inverters in Parallel Operation. IEEE Transactions on Industrial Electronics vol. 64 7552–7562 (2017) – 10.1109/tie.2017.2677309
- Wang, Y., Ren, B. & Zhong, Q.-C. Robust Power Flow Control of Grid-Connected Inverters. IEEE Transactions on Industrial Electronics vol. 63 6887–6897 (2016) – 10.1109/tie.2016.2586439
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Zhong, Q.-C. & Stefanello, M. A Port-Hamiltonian Control Framework to Render a Power Electronic System Passive. IEEE Transactions on Automatic Control vol. 67 1960–1965 (2022) – 10.1109/tac.2021.3069389
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica vol. 50 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- Strehle, F., Nahata, P., Malan, A. J., Hohmann, S. & Ferrari-Trecate, G. A Unified Passivity-Based Framework for Control of Modular Islanded AC Microgrids. IEEE Transactions on Control Systems Technology vol. 30 1960–1976 (2022) – 10.1109/tcst.2021.3136489
- Kong, L., Xue, Y., Qiao, L. & Wang, F. Enhanced Synchronization Stability of Grid-Forming Inverters With Passivity-Based Virtual Oscillator Control. IEEE Transactions on Power Electronics vol. 37 14141–14156 (2022) – 10.1109/tpel.2022.3187402
- Khefifi, N., Houari, A., Machmoum, M., Saim, A. & Ghanes, M. Generalized IDA-PBC Control Using Enhanced Decoupled Power Sharing for Parallel Distributed Generators in Standalone Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 9 5069–5082 (2021) – 10.1109/jestpe.2020.3034464
- Azimi, S. M. & Lotfifard, S. Supplementary Controller for Seamless Transitions Between Microgrids Operation Modes. IEEE Transactions on Smart Grid vol. 12 2102–2112 (2021) – 10.1109/tsg.2020.3049090
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Astolfi, A., Isidori, A. & Marconi, L. A Note on Disturbance Suppression for Hamiltonian Systems by State Feedback. IFAC Proceedings Volumes vol. 36 211–216 (2003) – 10.1016/s1474-6670(17)38893-6
- Zhong, Q.-C. & Zeng, Y. Universal Droop Control of Inverters With Different Types of Output Impedance. IEEE Access vol. 4 702–712 (2016) – 10.1109/access.2016.2526616
- Zhong, Q.-C. & Konstantopoulos, G. C. Current-Limiting Droop Control of Grid-Connected Inverters. IEEE Transactions on Industrial Electronics vol. 64 5963–5973 (2017) – 10.1109/tie.2016.2622402
- Zhong, Q. Power Electronics‐Enabled Autonomous Power Systems. (2020) doi:10.1002/9781118803516 – 10.1002/9781118803516
- Khalil. Nonlinear Systems (2002)
- Swaroop, D., Hedrick, J. K., Yip, P. P. & Gerdes, J. C. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control vol. 45 1893–1899 (2000) – 10.1109/tac.2000.880994