Generalized IDA-PBC Control Using Enhanced Decoupled Power Sharing for Parallel Distributed Generators in Standalone Microgrids
Authors
Nidhal Khefifi, Azeddine Houari, Mohamed Machmoum, Abdelhakim Saim, Malek Ghanes
Abstract
The development of an advanced modular control strategy for distributed generation-based islanded MicroGrids (MGs) is proposed in this article. This control strategy aims at achieving robust performances and accurate load power sharing in spite of system architecture. This strategy is based on the interconnection and damping assignment passivity-based control (IDA-PBC), which provides sufficient conditions to ensure the system modularity and stability. The design methodology of the proposed method is declined into three important steps. The whole system is modeled using the port-controlled Hamiltonian (PCH) formalism, the Hamiltonian function is minimized to synthesize the corresponding control laws, and finally, the stability of the synthesized control laws is verified. In this work, the Hamiltonian function is augmented with an enhanced decoupled droop (E2D) control in order to guarantee the stability of the whole system and ensure accurate power sharing when multiple DG units are interconnected. The effectiveness and modularity of the proposed modular IDA-PBC control with the E2D technique are evaluated and compared with a recent control strategy using an inner proportional-integral control with a decoupled droop technique. Experimental results and discussions are provided under resistive–inductive and nonlinear loading conditions.
Citation
- Journal: IEEE Journal of Emerging and Selected Topics in Power Electronics
- Year: 2021
- Volume: 9
- Issue: 4
- Pages: 5069–5082
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/jestpe.2020.3034464
BibTeX
@article{Khefifi_2021,
title={{Generalized IDA-PBC Control Using Enhanced Decoupled Power Sharing for Parallel Distributed Generators in Standalone Microgrids}},
volume={9},
ISSN={2168-6785},
DOI={10.1109/jestpe.2020.3034464},
number={4},
journal={IEEE Journal of Emerging and Selected Topics in Power Electronics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Khefifi, Nidhal and Houari, Azeddine and Machmoum, Mohamed and Saim, Abdelhakim and Ghanes, Malek},
year={2021},
pages={5069--5082}
}
References
- zurfi, Investigation of the line frequency for demand-side primary frequency control using behind-the-meter home batteries. International Journal of Renewable Energy Research (IJRER) (2018)
- Guerrero, J. M., Hang, L. & Uceda, J. Control of Distributed Uninterruptible Power Supply Systems. IEEE Trans. Ind. Electron. 55, 2845–2859 (2008) – 10.1109/tie.2008.924173
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Pang, S. et al. Toward Stabilization of Constant Power Loads Using IDA-PBC for Cascaded LC Filter DC/DC Converters. IEEE J. Emerg. Sel. Topics Power Electron. 9, 1302–1314 (2021) – 10.1109/jestpe.2019.2945331
- Zhang, J., Li, L., Dorrell, D. G., Norambuena, M. & Rodriguez, J. Predictive Voltage Control of Direct Matrix Converters With Improved Output Voltage for Renewable Distributed Generation. IEEE J. Emerg. Sel. Topics Power Electron. 7, 296–308 (2019) – 10.1109/jestpe.2018.2874275
- Nguyen, H. T., Kim, E.-K., Kim, I.-P., Choi, H. H. & Jung, J.-W. Model Predictive Control with Modulated Optimal Vector for a Three-Phase Inverter with an LC Filter. IEEE Trans. Power Electron. 33, 2690–2703 (2018) – 10.1109/tpel.2017.2694049
- Hilairet, M. et al. A passivity-based controller for coordination of converters in a fuel cell system. Control Engineering Practice 21, 1097–1109 (2013) – 10.1016/j.conengprac.2013.04.003
- Meshram, R. V. et al. Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Trans. Contr. Syst. Technol. 27, 161–174 (2019) – 10.1109/tcst.2017.2761866
- Khefifi, N., Houari, A., Machmoum, M., Ghanes, M. & Ait-Ahmed, M. Control of grid forming inverter based on robust IDA-PBC for power quality enhancement. Sustainable Energy, Grids and Networks 20, 100276 (2019) – 10.1016/j.segan.2019.100276
- Sanchez, S., Ortega, R., Grino, R., Bergna, G. & Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I 61, 2204–2211 (2014) – 10.1109/tcsi.2013.2295953
- Du, Y. et al. Dynamic Microgrids in Resilient Distribution Systems With Reconfigurable Cyber-Physical Networks. IEEE J. Emerg. Sel. Topics Power Electron. 9, 5192–5205 (2021) – 10.1109/jestpe.2020.2981921
- Li, C., Chaudhary, S. K., Savaghebi, M., Vasquez, J. C. & Guerrero, J. M. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance. IEEE Trans. Smart Grid 8, 2754–2764 (2017) – 10.1109/tsg.2016.2537402
- Zhang, P., Zhao, H., Cai, H., Shi, J. & He, X. Power decoupling strategy based on ‘virtual negative resistor’ for inverters in low‐voltage microgrids. IET Power Electronics 9, 1037–1044 (2016) – 10.1049/iet-pel.2015.0137
- Tayab, U. B., Roslan, M. A. B., Hwai, L. J. & Kashif, M. A review of droop control techniques for microgrid. Renewable and Sustainable Energy Reviews 76, 717–727 (2017) – 10.1016/j.rser.2017.03.028
- Unnikrishnan, B. K., Johnson, M. S. & Cheriyan, E. P. Small signal stability improvement of a microgrid by the optimised dynamic droop control method. IET Renewable Power Gen 14, 822–833 (2019) – 10.1049/iet-rpg.2019.0428
- Peng, Z. et al. Droop Control Strategy Incorporating Coupling Compensation and Virtual Impedance for Microgrid Application. IEEE Trans. Energy Convers. 1–1 (2019) doi:10.1109/tec.2019.2892621 – 10.1109/tec.2019.2892621
- Saim, A. et al. Adaptive Reference Trajectory for Power Quality Enhancement in Three-Phase Four-Wire Standalone Power Supply Systems With Nonlinear and Unbalanced Loads. IEEE J. Emerg. Sel. Topics Power Electron. 8, 1593–1603 (2020) – 10.1109/jestpe.2020.2966923
- Haddadi, A., Yazdani, A., Joos, G. & Boulet, B. A Gain-Scheduled Decoupling Control Strategy for Enhanced Transient Performance and Stability of an Islanded Active Distribution Network. IEEE Trans. Power Delivery 29, 560–569 (2014) – 10.1109/tpwrd.2013.2278376
- Xu, Y., Guo, Q., Sun, H. & Fei, Z. Distributed Discrete Robust Secondary Cooperative Control for Islanded Microgrids. IEEE Trans. Smart Grid 10, 3620–3629 (2019) – 10.1109/tsg.2018.2833100
- Wu, T., Liu, Z., Liu, J., Wang, S. & You, Z. A Unified Virtual Power Decoupling Method for Droop-Controlled Parallel Inverters in Microgrids. IEEE Trans. Power Electron. 31, 5587–5603 (2016) – 10.1109/tpel.2015.2497972
- Bouzid, A. E. M. et al. A novel Decoupled Trigonometric Saturated droop controller for power sharing in islanded low-voltage microgrids. Electric Power Systems Research 168, 146–161 (2019) – 10.1016/j.epsr.2018.11.016
- Lu, W., Zhou, K., Wang, D. & Cheng, M. A General Parallel Structure Repetitive Control Scheme for Multiphase DC–AC PWM Converters. IEEE Trans. Power Electron. 28, 3980–3987 (2013) – 10.1109/tpel.2012.2229395
- Zandi, F., Fani, B., Sadeghkhani, I. & Orakzadeh, A. Adaptive complex virtual impedance control scheme for accurate reactive power sharing of inverter interfaced autonomous microgrids. IET Generation Trans & Dist 12, 6021–6032 (2018) – 10.1049/iet-gtd.2018.5123
- Li, Z. et al. Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed ${H_2}/{H_\infty }$ Control. IEEE Trans. Ind. Electron. 64, 3862–3872 (2017) – 10.1109/tie.2016.2636798
- Mohan, V., Suresh, R., Singh, J. G., Ongsakul, W. & Madhu, N. Microgrid Energy Management Combining Sensitivities, Interval and Probabilistic Uncertainties of Renewable Generation and Loads. IEEE J. Emerg. Sel. Topics Circuits Syst. 7, 262–270 (2017) – 10.1109/jetcas.2017.2679030
- Bhattarai, R., Gurung, N. & Kamalasadan, S. Dual Mode Control of a Three-Phase Inverter Using Minimum Variance Adaptive Architecture. IEEE Trans. on Ind. Applicat. 54, 3868–3880 (2018) – 10.1109/tia.2018.2826469
- Jiang, S., Cao, D., Li, Y., Liu, J. & Peng, F. Z. Low-THD, Fast-Transient, and Cost-Effective Synchronous-Frame Repetitive Controller for Three-Phase UPS Inverters. IEEE Trans. Power Electron. 27, 2994–3005 (2012) – 10.1109/tpel.2011.2178266
- Wang, Z., Wu, W. & Zhang, B. A Distributed Quasi-Newton Method for Droop-Free Primary Frequency Control in Autonomous Microgrids. IEEE Trans. Smart Grid 1–1 (2016) doi:10.1109/tsg.2016.2609422 – 10.1109/tsg.2016.2609422
- Hou, X. et al. A fully decentralized control of grid-connected cascaded inverters. IEEE Trans. Sustain. Energy 10, 315–317 (2019) – 10.1109/tpwrd.2018.2816813
- Kwon, Y., Kwasinski, A. & Kwasinski, A. Coordinated Energy Management in Resilient Microgrids for Wireless Communication Networks. IEEE J. Emerg. Sel. Topics Power Electron. 4, 1158–1173 (2016) – 10.1109/jestpe.2016.2614425
- khefifi, Interconnection and damping assignment passivity for the control of PV/battery hybrid power source in islanded microgrid. International Journal of Renewable Energy Research (IJRER) (2019)
- Han, H. et al. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 7, 200–215 (2016) – 10.1109/tsg.2015.2434849
- Krishnamurthy, V. & Kwasinski, A. Effects of Power Electronics, Energy Storage, Power Distribution Architecture, and Lifeline Dependencies on Microgrid Resiliency During Extreme Events. IEEE J. Emerg. Sel. Topics Power Electron. 4, 1310–1323 (2016) – 10.1109/jestpe.2016.2598648
- Lai, J., Lu, X., Yu, X. & Monti, A. Stochastic Distributed Secondary Control for AC Microgrids via Event-Triggered Communication. IEEE Trans. Smart Grid 11, 2746–2759 (2020) – 10.1109/tsg.2020.2966691
- Baghaee, H. R., Mirsalim, M. & B. Gharehpetian, G. Power Calculation Using RBF Neural Networks to Improve Power Sharing of Hierarchical Control Scheme in Multi-DER Microgrids. IEEE J. Emerg. Sel. Topics Power Electron. 4, 1217–1225 (2016) – 10.1109/jestpe.2016.2581762
- Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B. & Talebi, H. A. Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal 12, 2749–2759 (2018) – 10.1109/jsyst.2016.2645165
- IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. doi:10.1109/ieeestd.2018.8332112 – 10.1109/ieeestd.2018.8332112
- Pichan, M. & Rastegar, H. Sliding-Mode Control of Four-Leg Inverter With Fixed Switching Frequency for Uninterruptible Power Supply Applications. IEEE Trans. Ind. Electron. 64, 6805–6814 (2017) – 10.1109/tie.2017.2686346
- Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 22, 613–625 (2007) – 10.1109/tpel.2006.890003
- Hamzeh, M., Emamian, S., Karimi, H. & Mahseredjian, J. Robust Control of an Islanded Microgrid Under Unbalanced and Nonlinear Load Conditions. IEEE J. Emerg. Sel. Topics Power Electron. 4, 512–520 (2016) – 10.1109/jestpe.2015.2459074
- Williamson, S. J., Griffo, A., Stark, B. H. & Booker, J. D. A controller for single-phase parallel inverters in a variable-head pico-hydropower off-grid network. Sustainable Energy, Grids and Networks 5, 114–124 (2016) – 10.1016/j.segan.2015.11.006
- Shahparasti, M., Mohamadian, M., Yazdian, A., Ahmad, A. A. & Amini, M. Derivation of a Stationary-Frame Single-Loop Controller for Three-Phase Standalone Inverter Supplying Nonlinear Loads. IEEE Trans. Power Electron. 29, 5063–5071 (2014) – 10.1109/tpel.2013.2287906