Port-Hamiltonian approaches to motion generation for mechanical systems
Authors
Satoru Sakai, Stefano Stramigioli
Abstract
This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system although the controller itself is not a port-Hamiltonian system. Second, we propose another method based on an adaptive asymptotic stabilization method for unknown damping. This adaptive asymptotic stabilizer does not use the value and the sign of the damping at all. Finally, we confirm the effectiveness of our techniques in some numerical simulation.
Citation
- Journal: Proceedings 2007 IEEE International Conference on Robotics and Automation
- Year: 2007
- Volume:
- Issue:
- Pages: 1948–1953
- Publisher: IEEE
- DOI: 10.1109/robot.2007.363607
BibTeX
@inproceedings{Sakai_2007,
title={{Port-Hamiltonian approaches to motion generation for mechanical systems}},
ISSN={1050-4729},
DOI={10.1109/robot.2007.363607},
booktitle={{Proceedings 2007 IEEE International Conference on Robotics and Automation}},
publisher={IEEE},
author={Sakai, Satoru and Stramigioli, Stefano},
year={2007},
pages={1948--1953}
}
References
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Khennouf, H., Canudas de Wit, C. & van der Schaft, A. J. Preliminary results on asymptotic stabilization of Hamiltonian systems with nonholonomic constraints. Proceedings of 1995 34th IEEE Conference on Decision and Control vol. 4 4305–4310 – 10.1109/cdc.1995.478917
- Maschke, Port-controlled Hamiltonian systems: modeling origins and system-theoretic properties. In IFAC Symp. Nonlinear Control Systems
- Maschke, B. M. & van der Schaft, A. J. A Hamiltonian approach to stabilization of nonholonomic mechanical systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control vol. 3 2950–2954 – 10.1109/cdc.1994.411344
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Sakai, S. & Fujimoto, K. DYNAMIC OUTPUT FEEDBACK STABILIZATION OF A CLASS OF NONHOLONOMIC HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes vol. 38 336–341 (2005) – 10.3182/20050703-6-cz-1902.00710
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 103 119–125 (1981) – 10.1115/1.3139651
- van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications vol. 10 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
- van. der. Schaft, Theory of port-hamiltonian systems. In Network modeling and control of physical systems, pages DISC (2005)