PID Passive-Based Control of Spacecraft Formation Flying in the Port-Hamiltonian Framework
Authors
Jiaming Wang, Wei Zheng, Qingrui Zhou, Jiang Shao
Abstract
The relative position and velocity control problem of spacecraft formation flight (SFF)is a classically significant problem in the field of space control. In this paper, we propose a high-precision nonlinear dynamics model for spacecraft formation flight with J2 perturbation in the framework of the port-Hamiltonian (pH) system. And through the application of the PID passive-based control method (PID-PBC), we give a new controller design method for the dynamics of SFF. Applying the leader-multi-follower spacecraft architecture, we first establish a nonlinear spacecraft formation dynamics model in the pH framework in the Earth Centered Inertial framework, and then transform it to the LVLH frame to establish a spacecraft relative motion dynamics model, and retain the nonlinear structure and \( J_{2} \) perturbation. Then a PID-PBC controller was established by constructing an additional system and designing a closed-loop Lyapunov function to ensure the stability of the target position. Numerical simulations show that the method is effective under the spacecraft formation reconfiguration mission.
Citation
- Journal: 2023 42nd Chinese Control Conference (CCC)
- Year: 2023
- Volume:
- Issue:
- Pages: 820–825
- Publisher: IEEE
- DOI: 10.23919/ccc58697.2023.10240864
BibTeX
@inproceedings{Wang_2023,
title={{PID Passive-Based Control of Spacecraft Formation Flying in the Port-Hamiltonian Framework}},
DOI={10.23919/ccc58697.2023.10240864},
booktitle={{2023 42nd Chinese Control Conference (CCC)}},
publisher={IEEE},
author={Wang, Jiaming and Zheng, Wei and Zhou, Qingrui and Shao, Jiang},
year={2023},
pages={820--825}
}
References
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Wang, D., Wu, B. & Poh, E. K. Satellite Formation Flying. Intelligent Systems, Control and Automation: Science and Engineering (Springer Singapore, 2017). doi:10.1007/978-981-10-2383-5 – 10.1007/978-981-10-2383-5
- Reyes-Baez, R., van der Schaft, A., Jayawardhana, B., Donaire, A. & Perez, T. Tracking Control of Marine Craft in the port-Hamiltonian Framework: A Virtual Differential Passivity Approach. 2019 18th European Control Conference (ECC) (2019) doi:10.23919/ecc.2019.8796246 – 10.23919/ecc.2019.8796246
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48, 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 63, 1032–1044 (2018) – 10.1109/tac.2017.2732283
- jian, Formation flying of spacecrafts for monitoring and inspection (2009)
- Borja, P., Cisneros, R. & Ortega, R. A constructive procedure for energy shaping of port—Hamiltonian systems. Automatica 72, 230–234 (2016) – 10.1016/j.automatica.2016.05.028
- Schweighart, S. A. & Sedwick, R. J. High-Fidelity Linearized J Model for Satellite Formation Flight. Journal of Guidance, Control, and Dynamics 25, 1073–1080 (2002) – 10.2514/2.4986
- khalil, Nonlinear Systems (2002)
- Bandyopadhyay, S., Foust, R., Subramanian, G. P., Chung, S.-J. & Hadaegh, F. Y. Review of Formation Flying and Constellation Missions Using Nanosatellites. Journal of Spacecraft and Rockets 53, 567–578 (2016) – 10.2514/1.a33291
- Lee, D., Sanyal, A. K. & Butcher, E. A. Asymptotic Tracking Control for Spacecraft Formation Flying with Decentralized Collision Avoidance. Journal of Guidance, Control, and Dynamics 38, 587–600 (2015) – 10.2514/1.g000101
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Trans. Automat. Contr. 66, 625–636 (2021) – 10.1109/tac.2020.2986731
- Javanmardi, N., Yaghmaei, A. & Yazdanpanah, M. J. Spacecraft formation flying in the port-Hamiltonian framework. Nonlinear Dyn 99, 2765–2783 (2020) – 10.1007/s11071-019-05445-0
- Ortega, R., van der Schaft, A., Castaños, F. & Astolfi, A. CONTROL BY (STATE–MODULATED) INTERCONNECTION OF PORT–HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes 40, 28–35 (2007) – 10.3182/20070822-3-za-2920.00005
- Castaños, F., Ortega, R., van der Schaft, A. & Astolfi, A. Asymptotic stabilization via control by interconnection of port-Hamiltonian systems. Automatica 45, 1611–1618 (2009) – 10.1016/j.automatica.2009.03.015
- Vaddi, S. S., Vadali, S. R. & Alfriend, K. T. Formation Flying: Accommodating Nonlinearity and Eccentricity Perturbations. Journal of Guidance, Control, and Dynamics 26, 214–223 (2003) – 10.2514/2.5054
- Mitchell, J. W. & Richardson, D. L. Invariant Manifold Tracking for First-Order Nonlinear Hill’s Equations. Journal of Guidance, Control, and Dynamics 26, 622–627 (2003) – 10.2514/2.5090
- curtis, Orbital Mechanics for Engineering Students (2013)
- Guibout, V. M. & Scheeres, D. J. Spacecraft Formation Dynamics and Design. Journal of Guidance, Control, and Dynamics 29, 121–133 (2006) – 10.2514/1.13002
- Delpech, M., Berges, J. C., Karlsson, T. & Malbet, F. Results of PRISMA/FFIORD extended mission and applicability to future formation flying and active debris removal missions. IJSPACESE 1, 382 (2013) – 10.1504/ijspacese.2013.059272
- alfriend, Spacecraft Formation Flying Dynamics Control and Navigation[M] (2009)
- CLOHESSY, W. H. & WILTSHIRE, R. S. Terminal Guidance System for Satellite Rendezvous. Journal of the Aerospace Sciences 27, 653–658 (1960) – 10.2514/8.8704