Passivity-Based Control with Disturbance Observer of Electromagnetic Formation Flight Spacecraft in the Port-Hamiltonian Framework
Authors
Jiaming Wang, Qingrui Zhou, Wei Zheng, Jiang Shao
Abstract
Satellite formation flying technology currently represents a focal point in space mission research. Traditional spacecraft payload performance and lifespan are often constrained by propellant limitations. Electromagnetic Formation Flying (EMFF), a propellant-free formation flying technique, has garnered widespread attention. Its inherent strong nonlinearity and coupling present challenges for high-precision control within EMFF. This paper presents the relative motion dynamics of a two-satellite EMFF in the port-Hamiltonian framework and constructs an accurate nonlinear model of the dynamics. Utilizing the concept of Interconnection and Damping Assignment and nonlinear disturbance observer, a composite disturbance-rejection passivity-based controller is designed, offering a method for controlling the magnetic dipole strength of formation satellites. Finally, numerical simulations are conducted to demonstrate the viability of the proposed dynamics model and control strategy.
Citation
- Journal: Applied Sciences
- Year: 2024
- Volume: 14
- Issue: 10
- Pages: 4248
- Publisher: MDPI AG
- DOI: 10.3390/app14104248
BibTeX
@article{Wang_2024,
title={{Passivity-Based Control with Disturbance Observer of Electromagnetic Formation Flight Spacecraft in the Port-Hamiltonian Framework}},
volume={14},
ISSN={2076-3417},
DOI={10.3390/app14104248},
number={10},
journal={Applied Sciences},
publisher={MDPI AG},
author={Wang, Jiaming and Zhou, Qingrui and Zheng, Wei and Shao, Jiang},
year={2024},
pages={4248}
}
References
- Song, Y., Zhou, Q. & Chen, Q. Control of Electromagnetic Formation Flight of Two Satellites in Low Earth Orbits. Aerospace vol. 10 229 (2023) – 10.3390/aerospace10030229
- Xuan-Mung, N. & Golestani, M. Energy-Efficient Disturbance Observer-Based Attitude Tracking Control With Fixed-Time Convergence for Spacecraft. IEEE Transactions on Aerospace and Electronic Systems vol. 59 3659–3668 (2023) – 10.1109/taes.2022.3229290
- Kwon, D. W. Propellantless formation flight applications using electromagnetic satellite formations. Acta Astronautica vol. 67 1189–1201 (2010) – 10.1016/j.actaastro.2010.06.042
- Kong, E. M. C. et al. Electromagnetic Formation Flight for Multisatellite Arrays. Journal of Spacecraft and Rockets vol. 41 659–666 (2004) – 10.2514/1.2172
- Elias, L. M., Kwon, D. W., Sedwick, R. J. & Miller, D. W. Electromagnetic Formation Flight Dynamics Including Reaction Wheel Gyroscopic Stiffening Effects. Journal of Guidance, Control, and Dynamics vol. 30 499–511 (2007) – 10.2514/1.18679
- Cai, W., Yang, L., Zhu, Y. & Zhang, Y. Optimal satellite formation reconfiguration actuated by inter-satellite electromagnetic forces. Acta Astronautica vol. 89 154–165 (2013) – 10.1016/j.actaastro.2013.04.009
- Ahsun, Control of Electromagnetic Satellite Formations in Near-Earth Orbits. J. Guid. Control Dynam. (2010)
- Huang, X., Zhang, C., Lu, H. & Yin, H. An LMI-based decoupling control for electromagnetic formation flight. Chinese Journal of Aeronautics vol. 28 508–517 (2015) – 10.1016/j.cja.2015.01.003
- Zhang, C. & Huang, X.-L. Angular-Momentum Management of Electromagnetic Formation Flight Using Alternating Magnetic Fields. Journal of Guidance, Control, and Dynamics vol. 39 1292–1302 (2016) – 10.2514/1.g001529
- Youngquist, R. C., Nurge, M. A. & Starr, S. O. Alternating magnetic field forces for satellite formation flying. Acta Astronautica vol. 84 197–205 (2013) – 10.1016/j.actaastro.2012.11.012
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Xuan-Mung, N., Golestani, M. & Hong, S.-K. Tan-Type BLF-Based Attitude Tracking Control Design for Rigid Spacecraft with Arbitrary Disturbances. Mathematics vol. 10 4548 (2022) – 10.3390/math10234548
- Ahsun, U. Dynamics and Control of Electromagnetic Satellite Formations in Low Earth Orbits. AIAA Guidance, Navigation, and Control Conference and Exhibit (2006) doi:10.2514/6.2006-6590 – 10.2514/6.2006-6590
- Zeng, G. & Hu, M. Finite-time control for electromagnetic satellite formations. Acta Astronautica vol. 74 120–130 (2012) – 10.1016/j.actaastro.2012.01.003
- Zhang, Y., Yang, L., Zhu, Y., Huang, H. & Cai, W. Nonlinear 6-DOF control of spacecraft docking with inter-satellite electromagnetic force. Acta Astronautica vol. 77 97–108 (2012) – 10.1016/j.actaastro.2012.03.020
- Huang, H., Cai, W. & Yang, L. 6-DOF formation keeping control for an invariant three-craft triangular electromagnetic formation. Advances in Space Research vol. 65 312–325 (2020) – 10.1016/j.asr.2019.09.033
- Qi, D., Yang, L., Zhang, Y. & Cai, W. Indirect robust suboptimal control of two-satellite electromagnetic formation reconfiguration with geomagnetic effect. Advances in Space Research vol. 64 2331–2344 (2019) – 10.1016/j.asr.2019.08.011
- Juhoon, Robust Tracking of Robot Manipulators via Momentum-based Disturbance Observer and Passivity-based Controller. Int. J. Control Autom. (2019)
- Li, J. et al. Passivity-Based Control With Active Disturbance Rejection Control of Vienna Rectifier Under Unbalanced Grid Conditions. IEEE Access vol. 8 76082–76092 (2020) – 10.1109/access.2020.2988656
- Alazard, D., Aoues, S., Cardoso-Ribeiro, F. L. & Matignon, D. Disturbance rejection for a rotating flexible spacecraft: a port-Hamiltonian approach. IFAC-PapersOnLine vol. 51 113–118 (2018) – 10.1016/j.ifacol.2018.06.031
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Liu, H., Li, J. & Hexi, B. Sliding mode control for low-thrust Earth-orbiting spacecraft formation maneuvering. Aerospace Science and Technology vol. 10 636–643 (2006) – 10.1016/j.ast.2006.04.008
- Fu, B., Wang, Q. & He, W. Nonlinear Disturbance Observer-Based Control for a Class of Port-Controlled Hamiltonian Disturbed Systems. IEEE Access vol. 6 50299–50305 (2018) – 10.1109/access.2018.2868919
- Ehsun, U. Using electromagnetic formation flying for remote sensing applications. 2008 2nd International Conference on Advances in Space Technologies 118–123 (2008) doi:10.1109/icast.2008.4747698 – 10.1109/icast.2008.4747698
- Cai, W., Yang, L., Zhu, Y. & Zhang, Y. Formation keeping control through inter-satellite electromagnetic force. Science China Technological Sciences vol. 56 1102–1111 (2013) – 10.1007/s11431-013-5188-3
- Yan, Adaptive Fault-Tolerant Attitude Tracking Control for Flexible Spacecraft with Guaranteed Performance Bounds. IEEE Trans. Aerosp. Electron. Syst. (2021)