Authors

Hayden Phillips-Brenes, Mauricio Muñoz-Arias, Roberto Pereira-Arroyo, Luis Miguel Esquivel-Sancho, Renato Rimolo-Donadio

Abstract

This article introduces a novel control approach for tackling the maximum power point tracking (MPPT) and output voltage regulation (VR) in photovoltaic (PV) cell systems. Leveraging the port-Hamiltonian (pH) formalism, an energy-based framework known for its physically multidomain modeling and control methodologies, our proposed control law offers promising solutions. Our control design is rooted in an interconnection damping assignment passivity-based strategy, incorporating temperature dependencies of the internal PV cell parameters. To validate the efficacy of our approach, we modeled, implemented, and calibrated a prototype system comprising a PV cell, a dc–dc buck converter, and a dc–dc boost converter that feeds a battery load. The entire setup is designed within the pH framework, ensuring a cohesive integration of energy-based control. To highlight our energy-based strategy’s reliability and performance, we evaluated it against a commercial solar charger under real solar irradiance conditions. Our experimental findings unequivocally demonstrate that the control mechanism employed by the commercial solar charger demands a significantly higher amount of energy and exhibits a premature collapse at lower power levels when compared to our proposed system and control strategy.

Citation

  • Journal: IEEE Transactions on Control Systems Technology
  • Year: 2025
  • Volume: 33
  • Issue: 2
  • Pages: 479–492
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tcst.2024.3483094

BibTeX

@article{Phillips_Brenes_2025,
  title={{Passivity-Based Control Approach for Photovoltaic DC-DC Conversion and Output Voltage Regulation}},
  volume={33},
  ISSN={2374-0159},
  DOI={10.1109/tcst.2024.3483094},
  number={2},
  journal={IEEE Transactions on Control Systems Technology},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Phillips-Brenes, Hayden and Muñoz-Arias, Mauricio and Pereira-Arroyo, Roberto and Miguel Esquivel-Sancho, Luis and Rimolo-Donadio, Renato},
  year={2025},
  pages={479--492}
}

Download the bib file

References

  • Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strategy Reviews vol. 24 38–50 (2019) – 10.1016/j.esr.2019.01.006
  • Cantarero, Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Res. Social Sci. (2020)
  • Shahbaz, M., Raghutla, C., Chittedi, K. R., Jiao, Z. & Vo, X. V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy vol. 207 118162 (2020) – 10.1016/j.energy.2020.118162
  • Güney, T. Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development & World Ecology vol. 26 389–397 (2019) – 10.1080/13504509.2019.1595214
  • Haddad, Wind and solar forecasting for renewable energy system using SARIMA-based model. Proc. Int. Conf. Time Ser. Forecasting
  • Pérez-Uresti, S. I., Lima, R. M., Martín, M. & Jiménez-Gutiérrez, A. On the design of renewable-based utility plants using time series clustering. Computers & Chemical Engineering vol. 170 108124 (2023) – 10.1016/j.compchemeng.2022.108124
  • Kihal, A., Krim, F., Talbi, B., Laib, A. & Sahli, A. A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory. Energies vol. 11 2791 (2018) – 10.3390/en11102791
  • Bi, P. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule vol. 5 2408–2419 (2021) – 10.1016/j.joule.2021.06.020
  • Cui, Y. et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy vol. 4 768–775 (2019) – 10.1038/s41560-019-0448-5
  • Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials vol. 4 269–285 (2019) – 10.1038/s41578-019-0097-0
  • Wang, J. et al. A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control. Advanced Materials vol. 33 (2021) – 10.1002/adma.202102787
  • Alharbi, B. M., Alhomim, M. A. & McCann, R. A. An Efficient High Voltage Gain Using Two-Stage Cascaded Interleaved Boost Converter for Solar PV System with MPPT Technique. 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) 1–4 (2020) doi:10.1109/isgt45199.2020.9087720 – 10.1109/isgt45199.2020.9087720
  • Chatrenour, N., Razmi, H. & Doagou-Mojarrad, H. Improved double integral sliding mode MPPT controller based parameter estimation for a stand-alone photovoltaic system. Energy Conversion and Management vol. 139 97–109 (2017) – 10.1016/j.enconman.2017.02.055
  • Attia, A new perturb and observe MPPT algorithm based on two steps variable voltage control. Int. J. Power Electron. Drive Syst. (2021)
  • Gong, L., Hou, G. & Huang, C. A two-stage MPPT controller for PV system based on the improved artificial bee colony and simultaneous heat transfer search algorithm. ISA Transactions vol. 132 428–443 (2023) – 10.1016/j.isatra.2022.06.005
  • Pradhan, R. & Subudhi, B. Double Integral Sliding Mode MPPT Control of a Photovoltaic System. IEEE Transactions on Control Systems Technology vol. 24 285–292 (2016) – 10.1109/tcst.2015.2420674
  • Lashab, A., Sera, D. & Guerrero, J. M. A Dual-Discrete Model Predictive Control-Based MPPT for PV Systems. IEEE Transactions on Power Electronics vol. 34 9686–9697 (2019) – 10.1109/tpel.2019.2892809
  • Phillips-Brenes, H., Pereira-Arroyo, R., Rímolo-Donadío, R. & Muñoz-Arias, M. Current-Sensorless Control Strategy for the MPPT of a PV Cell: An Energy-Based Approach. International Journal of Photoenergy vol. 2022 1–17 (2022)10.1155/2022/1747533
  • Kishor, Y. & Patel, R. N. Solar PV fed Two-Stage DC/DC Converter for Low-Voltage DC-Microgrid. 2021 IEEE Madras Section Conference (MASCON) 1–5 (2021) doi:10.1109/mascon51689.2021.9563259 – 10.1109/mascon51689.2021.9563259
  • Rastogi, Performance investigation of two-level reduced-switch D-STATCOM in grid-tied solar-PV array with stepped P&O MPPT algorithm and modified SRF strategy. J. King Saud Univ., Eng. Sci. (2023)
  • Lakshmi, M. & Hemamalini, S. Coordinated control of MPPT and voltage regulation using single-stage high gain DC–DC converter in a grid-connected PV system. Electric Power Systems Research vol. 169 65–73 (2019) – 10.1016/j.epsr.2018.12.011
  • Kaouane, M., Boukhelifa, A. & Cheriti, A. Regulated output voltage double switch Buck-Boost converter for photovoltaic energy application. International Journal of Hydrogen Energy vol. 41 20847–20857 (2016) – 10.1016/j.ijhydene.2016.06.140
  • Vasquez S., J. J. et al. Passivity Based-Control of Output Voltage Regulation with MPPT for Photovoltaic Panel Using two SEPIC Converters. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) 1–6 (2020) doi:10.1109/ropec50909.2020.9258757 – 10.1109/ropec50909.2020.9258757
  • Urtasun, A. & Lu, D. D.-C. Control of a Single-Switch Two-Input Buck Converter for MPPT of Two PV Strings. IEEE Transactions on Industrial Electronics vol. 62 7051–7060 (2015) – 10.1109/tie.2015.2432097
  • Alli, S.-S., Jovanovic, S., Poure, P. & Jamshidpour, E. MPPT and output voltage control of Photovoltaic systems using a Single-Switch DC-DC converter. 2016 IEEE International Energy Conference (ENERGYCON) 1–6 (2016) doi:10.1109/energycon.2016.7514123 – 10.1109/energycon.2016.7514123
  • Chakraborty, S., Arvind, P. & Kumar, D. Integrated Solar PV MPPT and V-f Control for Stand-alone Microgrid. 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON) 1–6 (2019) doi:10.1109/upcon47278.2019.8980045 – 10.1109/upcon47278.2019.8980045
  • van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/6510.4171/022-3/65
  • Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-010.1007/978-3-642-03196-0
  • van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014)10.1561/2600000002
  • van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
  • Khursheed, M.-N., Nadeem Khan, M. F., Ali, G. & Khan, A. K. A Review of Estimating Solar Photovoltaic Cell Parameters. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) 1–6 (2019) doi:10.1109/icomet.2019.8673500 – 10.1109/icomet.2019.8673500
  • Gnetchejo, P. J. et al. Important notes on parameter estimation of solar photovoltaic cell. Energy Conversion and Management vol. 197 111870 (2019) – 10.1016/j.enconman.2019.111870
  • Chaibi, Y., Salhi, M., El-jouni, A. & Essadki, A. A new method to extract the equivalent circuit parameters of a photovoltaic panel. Solar Energy vol. 163 376–386 (2018) – 10.1016/j.solener.2018.02.017
  • Muhammad, F. F. et al. Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLOS ONE vol. 14 e0216201 (2019) – 10.1371/journal.pone.0216201
  • Lo Brano, V., Orioli, A., Ciulla, G. & Di Gangi, A. An improved five-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells vol. 94 1358–1370 (2010) – 10.1016/j.solmat.2010.04.003
  • Villalva, M. G., Gazoli, J. R. & Filho, E. R. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics vol. 24 1198–1208 (2009) – 10.1109/tpel.2009.2013862
  • Fan, X. et al. High Voltage Gain DC/DC Converter Using Coupled Inductor and VM Techniques. IEEE Access vol. 8 131975–131987 (2020) – 10.1109/access.2020.3002902
  • Mobayen, S., Bayat, F., Lai, C.-C., Taheri, A. & Fekih, A. Adaptive Global Sliding Mode Controller Design for Perturbed DC-DC Buck Converters. Energies vol. 14 1249 (2021) – 10.3390/en14051249
  • Qi, Q., Ghaderi, D. & Guerrero, J. M. Sliding mode controller-based switched-capacitor-based high DC gain and low voltage stress DC-DC boost converter for photovoltaic applications. International Journal of Electrical Power & Energy Systems vol. 125 106496 (2021) – 10.1016/j.ijepes.2020.106496
  • Ghamari, S. M., Mollaee, H. & Khavari, F. Robust self-tuning regressive adaptive controller design for a DC–DC BUCK converter. Measurement vol. 174 109071 (2021) – 10.1016/j.measurement.2021.109071
  • Abdelmalek, S., Dali, A., Bakdi, A. & Bettayeb, M. Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters. Energy vol. 213 118816 (2020) – 10.1016/j.energy.2020.118816
  • Ghamari, S. M., Narm, H. G. & Mollaee, H. Fractional‐order fuzzy PID controller design on buck converter with antlion optimization algorithm. IET Control Theory & Applications vol. 16 340–352 (2021) – 10.1049/cth2.12230
  • Ahmad, S. & Ali, A. Active disturbance rejection control of DC–DC boost converter: a review with modifications for improved performance. IET Power Electronics vol. 12 2095–2107 (2019) – 10.1049/iet-pel.2018.5767
  • Singh, G. & Kundu, S. An efficient DC-DC boost converter for thermoelectric energy harvesting. AEU - International Journal of Electronics and Communications vol. 118 153132 (2020) – 10.1016/j.aeue.2020.153132
  • Zaid, M. et al. A transformerless high gai dc–dc</scp boost converter with reduced voltage stress. International Transactions on Electrical Energy Systems vol. 31 (2021) -- [10.1002/2050-7038.12877](https://doi.org/10.1002/2050-7038.12877)
  • Maroti, P. K. et al. New tri‐switching state non‐isolated high gain DC–DC boost converter for microgrid application. IET Power Electronics vol. 12 2741–2750 (2019) – 10.1049/iet-pel.2019.0236
  • Kobaku, T., Jeyasenthil, R., Sahoo, S., Ramchand, R. & Dragicevic, T. Quantitative Feedback Design-Based Robust PID Control of Voltage Mode Controlled DC-DC Boost Converter. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 68 286–290 (2021) – 10.1109/tcsii.2020.2988319
  • Chu, C.-C. & Chen, C.-L. Robust maximum power point tracking method for photovoltaic cells: A sliding mode control approach. Solar Energy vol. 83 1370–1378 (2009) – 10.1016/j.solener.2009.03.005
  • Kchaou, A., Naamane, A., Koubaa, Y. & M’sirdi, N. Second order sliding mode-based MPPT control for photovoltaic applications. Solar Energy vol. 155 758–769 (2017) – 10.1016/j.solener.2017.07.007
  • Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
  • CL-SM30M
  • Batzelis, E. I. & Papathanassiou, S. A. A Method for the Analytical Extraction of the Single-Diode PV Model Parameters. IEEE Transactions on Sustainable Energy vol. 7 504–512 (2016) – 10.1109/tste.2015.2503435