Operator Splitting Based Dynamic Iteration for Linear Infinite-Dimensional Port-Hamiltonian Systems
Authors
Bálint Farkas, Birgit Jacob, Timo Reis, Merlin Schmitz
Abstract
A dynamic iteration scheme for linear infinite-dimensional port-Hamiltonian systems is proposed. The error of the dynamic iteration is convergent to 0 and subject to a effective decreasing bound. No stability condition is required and the method is in particular applicable to port-Hamiltonian formulations arising from domain decompositions.
Keywords
35a35, 37l65, 47h05, dynamic iteration, infinite-dimensional linear systems, operator splitting, system nodes
Citation
- Journal: Complex Analysis and Operator Theory
- Year: 2026
- Volume: 20
- Issue: 1
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11785-025-01863-8
BibTeX
@article{Farkas_2025,
title={{Operator Splitting Based Dynamic Iteration for Linear Infinite-Dimensional Port-Hamiltonian Systems}},
volume={20},
ISSN={1661-8262},
DOI={10.1007/s11785-025-01863-8},
number={1},
journal={Complex Analysis and Operator Theory},
publisher={Springer Science and Business Media LLC},
author={Farkas, Bálint and Jacob, Birgit and Reis, Timo and Schmitz, Merlin},
year={2025}
}References
- Faou E, Ostermann A, Schratz K (2014) Analysis of exponential splitting methods for inhomogeneous parabolic equations. IMA Journal of Numerical Analysis 35(1):161–178. https://doi.org/10.1093/imanum/dru00 – 10.1093/imanum/dru002
- Geiser J (2011) Iterative Splitting Methods for Differential Equation – 10.1201/b10947
- (2006) Geometric Numerical Integration. Springer-Verla – 10.1007/3-540-30666-8
- Hansen E, Ostermann A (2009) Exponential splitting for unbounded operators. Math Comp 78(267):1485–1496. https://doi.org/10.1090/s0025-5718-09-02213- – 10.1090/s0025-5718-09-02213-3
- Hansen E, Henningsson E (2016) Additive domain decomposition operator splittings—convergence analyses in a dissipative framework. IMA J Numer Anal :drw043. https://doi.org/10.1093/imanum/drw04 – 10.1093/imanum/drw043
- Hansen E, Ostermann A, Schratz K (2016) The error structure of the Douglas–Rachford splitting method for stiff linear problems. Journal of Computational and Applied Mathematics 303:140–145. https://doi.org/10.1016/j.cam.2016.02.03 – 10.1016/j.cam.2016.02.037
- Hochbruck M, Ostermann A (2010) Exponential integrators. Acta Numerica 19:209–286. https://doi.org/10.1017/s096249291000004 – 10.1017/s0962492910000048
- Hundsdorfer W, Verwer J (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Berlin Heidelber – 10.1007/978-3-662-09017-6
- Jahnke T, Lubich C (2000) Error Bounds for Exponential Operator Splittings. BIT Numerical Mathematics 40(4):735–744. https://doi.org/10.1023/a:102239651965 – 10.1023/a:1022396519656
- Marchuk GI (1990) Splitting and alternating direction methods. Handbook of Numerical Analysis 197–46 – 10.1016/s1570-8659(05)80035-3
- McLachlan RI, Quispel GRW (2002) Splitting methods. Acta Numerica 11:341–434. https://doi.org/10.1017/s096249290200005 – 10.1017/s0962492902000053
- Strang G (1968) On the Construction and Comparison of Difference Schemes. SIAM J Numer Anal 5(3):506–517. https://doi.org/10.1137/070504 – 10.1137/0705041
- Csomós P, Ehrhardt M, Farkas B (2021) Operator splitting for abstract Cauchy problems with dynamical boundary conditions. Operators and Matrices (3):903–935. https://doi.org/10.7153/oam-2021-15-6 – 10.7153/oam-2021-15-60
- Csomós P, Farkas B, Kovács B (2023) Error estimates for a splitting integrator for abstract semilinear boundary coupled systems. IMA Journal of Numerical Analysis 43(6):3628–3655. https://doi.org/10.1093/imanum/drac07 – 10.1093/imanum/drac079
- Bátkai A, Csomós P, Farkas B (2016) Operator splitting for dissipative delay equations. Semigroup Forum 95(2):345–365. https://doi.org/10.1007/s00233-016-9812- – 10.1007/s00233-016-9812-y
- Bellen A, Zennaro M (2003) Numerical Methods for Delay Differential Equation – 10.1093/acprof:oso/9780198506546.001.0001
- Bellen A, Maset S, Zennaro M, Guglielmi N (2009) Recent trends in the numerical solution of retarded functional differential equations. Acta Numerica 18:1–110. https://doi.org/10.1017/s096249290639001 – 10.1017/s0962492906390010
- Jacob B, Zwart HJ (2012) Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Springer Base – 10.1007/978-3-0348-0399-1
- Peaceman DW, Rachford, Jr. HH (1955) The Numerical Solution of Parabolic and Elliptic Differential Equations. Journal of the Society for Industrial and Applied Mathematics 3(1):28–41. https://doi.org/10.1137/010300 – 10.1137/0103003
- Lions PL, Mercier B (1979) Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J Numer Anal 16(6):964–979. https://doi.org/10.1137/071607 – 10.1137/0716071
- Hundsdorfer WH, Verwer JG (1989) Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems. Math Comp 53(187):81–101. https://doi.org/10.1090/s0025-5718-1989-0969489- – 10.2307/2008350
- Günther M, Bartel A, Jacob B, Reis T (2020) Dynamic iteration schemes and port‐Hamiltonian formulation in coupled differential‐algebraic equation circuit simulation. Circuit Theory & Apps 49(2):430–452. https://doi.org/10.1002/cta.287 – 10.1002/cta.2870
- Bartel A, Diab M, Frommer A, Günther M, Marheineke N (2025) Splitting techniques for DAEs with port-Hamiltonian applications. Applied Numerical Mathematics 214:28–53. https://doi.org/10.1016/j.apnum.2025.03.00 – 10.1016/j.apnum.2025.03.004
- Lorenz J, Zwerschke T, Günther M, Schäfers K (2025) Operator splitting for coupled linear port-Hamiltonian systems. Applied Mathematics Letters 160:109309. https://doi.org/10.1016/j.aml.2024.10930 – 10.1016/j.aml.2024.109309
- Mönch M, Marheineke N (2025) Commutator-based operator splitting for linear port-Hamiltonian systems. Applied Numerical Mathematics 210:25–38. https://doi.org/10.1016/j.apnum.2024.12.00 – 10.1016/j.apnum.2024.12.007
- Diestel J, Uhl J Jr (1977) Vector Measures. Mathematical Surveys and Monograph – 10.1090/surv/015
- Staffans O (2005) Well-Posed Linear System – 10.1017/cbo9780511543197
- Tucsnak M, Weiss G (2009) Observation and Control for Operator Semigroups. Birkhäuser Base – 10.1007/978-3-7643-8994-9
- Curtain R, Zwart H (2020) Introduction to Infinite-Dimensional Systems Theory. Springer New Yor – 10.1007/978-1-0716-0590-5
- Philipp FM, Reis T, Schaller M (2025) Infinite-dimensional port-Hamiltonian systems: a system node approach. Math Control Signals Syst 37(3):573–620. https://doi.org/10.1007/s00498-025-00412- – 10.1007/s00498-025-00412-0
- Staffans OJ (2002) Passive and Conservative Continuous-Time Impedance and Scattering Systems. Part I: Well-Posed Systems. Mathematics of Control, Signals, and Systems (MCSS) 15(4):291–315. https://doi.org/10.1007/s00498020001 – 10.1007/s004980200012
- (2000) One-Parameter Semigroups for Linear Evolution Equations. Springer-Verla – 10.1007/b97696
- Barbu V (2010) Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer New Yor – 10.1007/978-1-4419-5542-5
- Bartel A, Günther M, Jacob B, Reis T (2023) Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems. Numer Math 155(1–2):1–34. https://doi.org/10.1007/s00211-023-01369- – 10.1007/s00211-023-01369-5
- Dell’Oro F, Paunonen L, Seifert D (2023) Optimal decay for a wave-heat system with Coleman–Gurtin thermal law. Journal of Mathematical Analysis and Applications 518(2):126706. https://doi.org/10.1016/j.jmaa.2022.12670 – 10.1016/j.jmaa.2022.126706
- Kurula M, Zwart H (2014) Linear wave systems onn-D spatial domains. International Journal of Control :1–24. https://doi.org/10.1080/00207179.2014.99333 – 10.1080/00207179.2014.993337
- Grisvard P (2011) Elliptic Problems in Nonsmooth Domain – 10.1137/1.9781611972030
- (2007) An Introduction to Sobolev Spaces and Interpolation Spaces. Springer Berlin Heidelber – 10.1007/978-3-540-71483-5
- Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhikerʼs guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136(5):521–573. https://doi.org/10.1016/j.bulsci.2011.12.00 – 10.1016/j.bulsci.2011.12.004
- Cohen GC (2002) Higher-Order Numerical Methods for Transient Wave Equations. Springer Berlin Heidelber – 10.1007/978-3-662-04823-8
- Kopriva DA (2009) Implementing Spectral Methods for Partial Differential Equations. Springer Netherland – 10.1007/978-90-481-2261-5